

Light DM search with TESSERACT

Paul Vittaz, IP2I - CNRS

Motivations

DM candidates: 50 orders of magnitudes in mass

Focus of DM searches for the last decades has been on axion DM (ueV - meV) and standard WIMP (10 GeV - TeV)

The standard WIMP case was highly motivated thanks to the so-called WIMP miracle and the SUSY prediction

After few decades, still no DM signal and ongoing or planned ton-scale experiment are approaching the neutrino limit

Need for new experiment with broader DM mass range and increased sensitivity to more DM interactions ⇒ use of low threshold cryogenic detectors

Low Energy Excess

- Currently, all cryogenic experiment which have reached sub keV threshold are seeing a Low Energy Excess (LEE) limiting their DM search
- LEE characteristics: time dependant, non ionising ("Phonon Only"), mostly independent of sites, dependance with holder/vibrations (?)

CRESST collaboration, SciPost Phys.Proc. 12 (2023) 013

TESSERACT: Proposed experiment at LSM

Transition Edge Sensor with Sub-Ev Resolution And Cryogenic Targets

- Target: extend the DM search window from meV to GeV with ultra-low threshold cryogenic detectors
- Design driver:
 - ofind the origin of LEE to mitigate it
 - develop technologies that can reject it

TESSERACT: Proposal experiment at LSM

Transition Edge Sensor with Sub-Ev Resolution And Cryogenic Targets

One experimental design, two cryostats, several targets :

- SPICE (Al₂O₃ and GaAs)
- HeRALD (LHe)
- Ge/Si bolometers

All equipped with new generation TES

Complementary DM sensitivity
Commissioning at Laboratoire Souterrain de Modane

TESSERACT: New generation TES phonon sensors

SPICE (Sub-eV Polar Interaction Cryogenic Experiment)

Background discrimination : selection of events shared between both channels

LEE mitigation : Si substrate suspended with Al wires

⇒ suppress a stress induced LEE source from the holder

SPICE

Proof of concept: 1st DM limit from above-ground detector

- World leading 258.5 meV baseline resolution leading to eV-scale threshold already achieved with a 0.2 g Si detector and Tc = 50 mK: arXiv:2505.16092v2
- Targeted Tc around 15-20 mK recently achieved
- Dark Matter limit published : *arXiv:2503.03683v2*

GaAs and Sapphire R&D ongoing

HeRALD (Helium Roton Apparatus for Light Dark Matter)

R. Anthony-Petersen et al., arXiv:2307.11877

Target: Liquid He

 $m = 1 \text{ GeV/c}^2$

- Light material ⇒ better kinematic matching with LDM
- Extremely radiopure
- No internal stress nor dislocation (LEE source?)
- Superfluid ⇒ no vibrational coupling with the environment (another LEE source?)
- Several signal channels:
 - quasiparticles (phonon/roton)
 - singlet ⇒ short lived, decay to emit a 15.5 eV photon
 - triplet ⇒ long lived, ballistic

cnrs

HeRALD

Particle identification thanks to pulse shape discrimination

time (ms)

LEE mitigation strategy (in addition of the intrinsic characteristics of LHe):

- Several channels above the vacuum
 - Events in calorimeters (LEE) ⇒ single channel
 - Events in ⁴He ⇒ multiple channels

Near-term HeRALD plans all involve multi-channel evaporation readout and testing the above strategy

2-Channel Array for HeRALD v0.1 @UMass (3-inch)

Ge/Si semiconductors

Based on EDELWEISS and Ricochet expertise

- Two channels: heat and ionization
- Luke boost ⇒ additional phonons proportional to ΔV

Two working modes: Low Voltage (LV) and High Voltage (HV)

CNTS i P 2i

Ge/Si semiconductors HV

High-Voltage approach for optimal ERDM sensitivity

$$E_{\text{heat}} = E_{\text{recoil}} + E_{\text{ion}} \Delta V / \epsilon_{\text{eh}}$$

$$E_{\text{heat}} = E_{\text{ion}} \Delta V / \epsilon_{\text{eh}} \quad (HV)$$

First observation of a single-electron sensitivity in a massive (40g) Ge cryogenic detector!

Low-imp. TES and SQUID readout: 0.1 electron/hole (RMS)

For TESSERACT:

- High control of IR backgrounds and charge leakage
- LEE discrimination down to single e/h pair
- Exquisite sensitivities to ERDM with LEE discrimination

Ge/Si semiconductors LV

Low-Voltage approach for optimal NRDM sensitivity

Heat sensor (NTD-Ge)

Ricochet Mini-Cryocube

- Double readout heat/ionization ⇒ particle identification
- LEE are non ionizing ⇒ improving the charge resolution is of major importance

Ge/Si semiconductors LV

Low-Voltage approach for optimal NRDM sensitivity

Ricochet Cryocube

- Looking for: **CENNS**
- Phonon sensor: NTD-Ge
- Payload: 3 x 40 g
- Total capacitance ~45 pF
- σ_{ion} ~30 40 eVee
- σ_{heat} ~40 eV

TES4DM

- Looking for: **DM**
- Phonon sensor: NTD-Ge ⇒ TES
- Payload: 4 x **5.35 g (1 cm³)**
- Total capacitance ~5 pF
- σ_{ion} ~ 10 eVee
- σ_{heat} < 1 eV

sensor (NTD-Ge)

R&D ongoing

14 **TAUP2025**

Prototype

TESSERACT : Proposal for an installation in the *Laboratoire Souterrain de Modane* (LSM)

SNOLAB SNOLAB SNOLAB Equivalent Vertical Depth (km w.e.)

TESSERACT Integration at LSM

- Two copies of the setup, for enabling both:
 - o underground R&D and detector optimisation
 - o DM science data taking in parallel
- Targeted background levels of 1 DRU gamma with the possibility to add an active cryogenic veto to further lower the gamma background levels.
- Each detector technologies is designed to achieve major breakthrough in short time scales (few months) hence allowing fast turnarounds
- The two setups will be in LSM between 2027 and 2028

15

- LSM (Laboratoire Souterrain de Modane): deepest site in Europe, 4800 m.w.e, 5 μ/m²/day
- Clean room + deradonized air
- PE and lead shielding
- Selection of radiopure materials

CNTS TAUP2025

Conclusion

TESSERACT @ LSM

- Different cryogenic targets (Si, Ge, Al₂O₃, GaAs, ⁴He)
- LEE mitigation or discrimination strategies
- Particle Identification
- Low impedance TES phonon sensors
- LSM ultra-low background environnement

Thank you for your attention

Questions?

Low-Voltage approach for optimal particle identification (Ricochet style bolometer)

PL 38

Salagnac & al: arXiv:2111.12438

FID 38

• Incomplete charge coll. < 10 %

• Fiducial volume: 96 %

Surface event rejection : NO

Total capacitance : 15 pF

Incomplete charge coll. < 1 %

• Fiducial volume : **62** %

Surface event rejection : **YES**

Total capacitance: 18 pF

Shielding

High Voltage loss of Particle Identification

Different kinds of phonons and different sensors

CNTS iP 2i

TESSERACT back. model = 10 DRU gamma + other backgrounds from EDW-III

From Ricochet to TESSERACT

Going beyond the Ricochet CryoCube technology

Looking for: DM Phonon sensor: NTD-Ge Total capacitance ~5 pF Payload: 4 x 5.35 g σ_{ion} 10 eVee σ_{heat} ~10 - 20 eVph

J.Colas

- Reduce the detector volume
- Put the HEMT amplificator at < 1 cm from the electrode</p>
- Optimize the holder, COMSOL driven

- Reduce the detector volume
- Optimize NTD dimension
- Low microphonic holder