

First measurement of GaAs as a scintillating calorimeter

DAREDEVIL project

Andrea Melchiorre on behalf of the Daredevil group

DAREDEVIL

DARk-mattEr-DEVIces-for-Low-energy-detection

Develop a multi-target experiment to access DM candidates with mass in the sub-GeV range.

Detection channel: scattering on target electrons

Possible target materials:

- Dirac semimetals (ZrTe5)
- Weyl semimetals (CaAuAs)
- Superconductors (AI)
- Low gap semiconductor (GaAs)

DAREDEVIL COLLABORATION

Different expertise brought together for new class of detectors.

The team:

GOAL OF DETECTOR DEVELOPMENT

- Low threshold detection
- Linearity
- Particle identification
- 3 detection channels:
 - radiative photons
 - not radiative phonons
 - charge electron/hole pairs

Low temperature calorimetry

LOW TEMPERATURE CALORIMETRY

Detection channels and sensors:

- Phonon: sensitive detectors (NTD, TES)
- Light: Cryogenic light detector based on photon absorber+phonon sensor
- Charge: Position reconstruction

GALLIUM ARSENIDE

- scintillating material with direct band gap of 1.42 eV that will significantly improve the particle identification capability.
- It is a polar crystal, that would enhance sensitivity to dark photon absorption
- semiconductor material, allowing for controlled and effective charge collection

Thanks to these properties GaAs can be used as:

- Low temperature calorimeter
- Scintillator

FIRST MEASUREMENT OF GaAs AS A LOW TEMPERATURE CALORIMETER

For this first measurement of GaAs as a cryogenic calorimeter, we used:

- 2-inch diameter and 0.5 mm thick wafer (5.35 g).
- The wafer was equipped with a 3 × 0.6 × 0.4 mm NTD (Neutron Transmutation Doped Ge thermistor) - phonon sensor

We conduct the measurement in PT assisted dilution refrigerator in HALL-C @LNGS

For the calibration we used an 55Fe and 238U/234U sources

RESULTS

We conducted a 12-hour long calibration. From the datastream we identify relevant signal events and several basic parameters are computed:

- Baseline level, slope, RMS
- Rise time
- Decay time
- Average pulse

Energy estimator: Optimum Filter - maximises signal to noise ratio

Baseline resolution (RMS) PT off	283 ± 48	eV
Peak σ at 5.9 keV PT off	314 ± 22	eV
Baseline resolution (RMS) PT on	542 ± 6	eV
Peak σ at 5.9 keV PT on	546 ± 21	eV

Total energy spectrum

CRYOGENIC FACILITY UPGRADES

Another decoupling spring

Pulse tube mounted on independent support

LIGHT AND HEAT READOUT

Particle interaction in GaAs crystal

□ Deposits energy in the main absorber

Phonon signal

A portion of the energy is converted into phonons

□ Detected by an NTD attached to the GaAs crystal

Light signal

The remaining energy is emitted as **light (scintillation)**

- □ Collected by a secondary calorimeter: a Germanium crystal
- □ Light absorbed in Ge produces a thermal signal

NEGANOV-TROFIMOV-LUKE EFFECT

Amplification of phonon signal with static electric field:

- electron-hole pairs created by interacting photons are accelerated
- during the acceleration they scatter along crystal lattice
- phonon signal will be increased by a factor of 10

EXPERIMENTAL SET-UP

GaAs crystal:

- 2-inch diameter and 0.5 mm thick wafer
- $3 \times 0.6 \times 0.4 \text{ mm NTD}$
- γ-ray source: Thorium tungstate (74W and 90Th) wire and 55Fe
- α source 238U/234U

Ge-LD

- 2-inch diameter and 0.5 mm thick wafer
- $3 \times 0.6 \times 0.4 \text{ mm NTD}$
- 55Fe source for the calibration

The distance between the two crystals is 10 mm.

DATA ANALYSIS AND RESULTS - GaAs

After upgrades

Baseline resolution (RMS)	121 ± 2	eV
Peak σ at 5.9 keV	140 ± 8	eV

Before upgrades

Baseline resolution (RMS) PT off	283 ± 48	eV
Peak σ at 5.9 keV PT off	314 ± 22	eV
Baseline resolution (RMS) PT on	542 ± 6	eV
Peak σ at 5.9 keV PT on	546 ± 21	eV

DATA ANALYSIS AND RESULTS - Ge-LD

55Fe source used for the calibration of the LD. After the calibration:

- A voltage of **130 V** was applied to the electrodes
- Gain of ~12

Improved baseline resolution

From
$$\sigma = 60 \text{ eV}$$

(w/o NTL effect)

To $\sigma = 5 \text{ eV}$

(with NTL effect)

Baseline resolution (RMS)	60.4 ± 0.5	eV
Peak σ at 5.9 keV	102 ± 8	eV

Andrea Melchiorre - TAUP2025

DATA ANALYSIS AND RESULTS

After the calibration of GaAs and Ge-LD:

- For each heat event, the corresponding light window was analyzed
- Built the **light vs heat scatter plot**

2 "Anomalies":

- Alpha events show higher scintillation light than beta/gamma events (see ZnSe and ZnO)
- Non-linear response is observed in alpha events.

	Light yield (keV/MeV) @ 1 MeV
eta/γ	0.07 ± 0.01
α	0.9 ± 0.2

Andrea Melchiorre - TAUP2025

NEW GaAs CRYSTAL

The new crystal was measured under identical conditions to the previous sample.

- 2-inch diameter and 0.325 mm thick wafer (3.5 g).
- The wafer was equipped with a $3 \times 0.6 \times 0.4$ mm NTD .
- For the calibration we used an 55Fe.

Baseline resolution (RMS)	44.5 ± 0.8	eV
Peak σ at 5.9 keV	59 ± 1	eV

15

Andrea Melchiorre - TAUP2025

CONCLUSION AND PERSPECTIVES

- Cryostat upgrades successful

 GaAs detector threshold improved from 1.5 keV to 360 eV
- First demonstration of particle discrimination in GaAs
 via light yield
- New GaAs crystal further improved threshold:
 from 360 eV to 133.3 eV

Next goal: reach few-eV threshold

• Use **Transition Edge Sensors (TES)** as thermal sensors

THANK YOU FOR YOUR ATTENTION

Andrea Melchiorre on behalf of the Daredevil group

