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Boosted Dark Matter Directionality in Large Liquid Scintillators

• No Successful DM detection has announced yet. 

• Hypothesis: The mass of DM particles in our galaxy 
halo are too light and too cold to trigger observable 
signals in current detectors.

• DM particles that been boosted to relativistic speed 
by certain mechanism, could trigger our detectors, 
and possibly leave a directional signature.
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• Traditionally, charged particle 
directionality will be lost due to 
scintillation light.

• We will use neutron interaction points to 
reconstruct directionality.

• Lower energy threshold than Water 
Cherenkov detector. 

lights from 𝐶11 nucleus deexciation
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𝜃𝑐

Neutron Capture 
2.2 (4.9) MeV 𝛾 on H (C)
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Outline:
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Boosted Dark Matter by Cosmic Rays

Detector’s nucleon  DM  Cosmic ray

• DM density profile follows NFW 
profile. 

• Cylindrical Leaky-Box Model 

• Cosmic rays(p and He only ) are 
assumed to be isotropic and 
homogeneous. 

We Follow [Ema,2021] scheme to obtain BDM Flux.
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Boosted Dark Matter Flux

Found by NFW profile with Cylindrical Leaky Box (Galactic Disk Size)

𝐷 𝑏, 𝑙 = න
𝑙.𝑜.𝑠

𝜌𝜒 ⋅ 𝑑𝑙

7

dΦ𝜒

dK𝜒dΩ
=

D b, l

m𝜒
෍

𝐴

න
𝐾𝐴𝑚𝑖𝑛

∞

𝑑𝐾𝐴

𝑑Φ𝐴

𝑑KAdΩ
 ⋅

𝑑𝜎𝐴𝜒

𝑑𝐾𝜒

LIS cosmic ray Flux

DM-Nucleus Coherent Scattering

DM model: Dirac fermion χ with a scalar mediator 𝜙 to 
interact with Standard Model particle .

DM Flux Peaked at 
Galactic Center



This approximation serves as a conservative limit. 
It overestimates the stopping power of Earth Crust than simulation. 

(Emken, 2018)

Earth Attenuation Effect   (Ema,2021) & (Bringmann,2019)

Assumptions:
1. The energy loss at each scattering as its averaged value:

𝑑𝐾𝜒(𝑧)

𝑑𝑧
= −𝑛𝑇 න

0

𝐾𝑇−𝑚𝑎𝑥

𝑑𝐾𝑇 𝐾𝑇

𝑑𝜎𝜒𝑇

𝑑𝐾𝑇
𝐾𝜒, 𝐾𝑇

2. The target particles are protons and neutrons (1:1) and we assume 
form factor 𝐹𝐴 𝑞2 ≈ 1. 

3. No change in direction for DM at each scattering. 

(𝑏2, 𝑙2)

(𝑏1, 𝑙1)

𝜔
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𝑚𝜒 = 1 MeV

𝑚𝜙 = 1 𝐺𝑒𝑉
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𝑚𝜒 = 1 MeV

𝑚𝜙 = 1 𝐺𝑒𝑉

ത𝜎𝑛 = 3.68 × 10−34 𝑐𝑚2

𝐾𝜒
ഥ𝐾𝜒 = [10 𝑀𝑒𝑉 ~ 10 𝐺𝑒𝑉]
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Neutron Triggered Rate:    (Lin,2025) (Bodek, 2019)
𝑑𝑁

𝑑𝐾𝑛′𝑑Ωn
′ = 𝑁𝐽𝑈𝑁𝑂 ⋅ න𝑑Ω𝜒 න 𝑑𝑡 න𝑑ഥK𝜒
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Carbon 
Nucleus

neutronDM

Kinematics:
• Quasi-Elastic (QEL) Scattering, |𝑞3| > 350 MeV
• Relativistic Fermi Gas model, 𝑝𝐹 = 221 MeV.
• 𝐸𝑅 = 27.1 MeV.

Nuclear Effect: 
•  Pauli Blocking 
•  Final State Interaction
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𝑚𝜒 = 1 MeV

𝑚𝜙 = 1 𝐺𝑒𝑉
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ഥ𝐾𝑁
′ = [5 𝑀𝑒𝑉, 1 𝐺𝑒𝑉]

𝑚𝜒 = 1 MeV

𝑚𝜙 = 1 𝐺𝑒𝑉

ത𝜎𝑛 = 3.68 × 10−34 𝑐𝑚2



Simulated Capture Angle in Geant4 + Vertex Resolution
For each 𝐾𝑛 bin, 𝑁 = 10000

(0,0,0)

68.3%
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‘The vertex reconstruction bias is kept 
within 4 cm level throughout the 
detector (JUNO) and resolution for 
events with around 1 MeV energy 
deposition is estimated to be 
approximately 9 cm.’ (Takenaka, 2025)

Actual Capture (Deexcite) Position 

Reconstructed Capture (Deexcite) Position 
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Before Diffusion After Diffusion

ഥ𝐾𝑛
′ = 5 𝑀𝑒𝑉, 1 𝐺𝑒𝑉

𝑚𝜒 = 1 MeV

𝑚𝜙 = 1 𝐺𝑒𝑉

ത𝜎𝑛 = 3.68 × 10−34 𝑐𝑚2

Δ𝑁𝑚𝑎𝑥

Δ𝑁𝑚𝑖𝑛
= 14.01

Δ𝑁𝑚𝑎𝑥

Δ𝑁𝑚𝑖𝑛
= 5.61



Background Estimation:
We only considered the Indistinguishable BG:

Atmospheric Neutrino-Neutron Neutral-Current QEL interaction.

For 5 yrs with 18.3 ktons in JUNO for ഥ𝐾𝑛
′ = 5 𝑀𝑒𝑉, 1 𝐺𝑒𝑉

𝑁𝐵𝐺 ≈ 1131.05
We also assume they will be isotropic

We choose Model-G, which is GENIE with RFGs
Energy transfer for 𝜈 − 𝐶12 NC interacion in LS

(Cheng,2021)

(Cheng,2021)
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To obtain a 95% CL line, we used joint 
likelihood function for the 768 pixels:

𝐿 = ෑ

𝑖

𝑁=768
𝜆𝑖

𝑘𝑖𝑒−𝜆𝑖

𝑘𝑖!

Where 𝜆𝑖 = 𝑛𝑆 + 𝑛𝐵𝐺 , 𝑘𝑖 = 𝑛𝐵𝐺.

Then we use the log likelihood ratio: 
(Cowan, 2013)

𝑇𝑆 = −2𝑙𝑛
𝐿 𝑁𝑆

𝐿 𝑁𝑆 = 0
= 2.71

We also plot the all-sky curve, with 
one single “All-sky” bin is used .

Likelihood and Constraint:



Conclusion:

• Neutrons retain the directional signature of the BDM.

• Leveraging this directionality provides a sightly better constraint than a 
single ‘All-Sky’ bin, with the enhancement becoming more significant at 
higher DM masses.

• A further refinement of the energy bin range is expected to increase the 
signal-to-background ratio, thereby strengthening our constraints.
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Thank you!

20



Backup Slides
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Neutron Diffusion:  Geant4
Physics list: 

1. G4HadronPhysicsFTFP_BERT_HP()
2. G4HadronElasticPhysics()
3. G4EmStandardPhysics()

Configuration:
1. Linear alkylbenzene(LAB)
2. 2,5-diphenyloxazole (PPO)
3. p-bis-(o-methylstyryl)-benzene (bis-MSB)

22

𝜃𝑐𝒅 = 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐

𝜽𝒄 = 𝐚𝐫𝐜𝐜𝐨𝐬
𝒛

𝒅
  

Chemicals Chemicals Composition Density (g/cm^3)

LAB C=18, H=30 0.855985 (99.6%)

PPO C=15, H=11, N=1, O=1 0.003 (0.3%)

Bis-MSB C=24, H=22 0.000015

Neutron Capture 
2.2 (4.9) MeV 𝛾 on H (C)

(0,0,0)
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Neutron Capture

(0,0,0)

(Proton recoil, 
Inelastic 
scattering…..)

Set at time cut when doing analysis! 
(2ns)

(~10ns)

(~200 𝜇s)



Filtering of Single Neutron Capture Event
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Inelastic
Scattering

Primary neutron

Secondary neutrons



Simulated Capture Angle in Geant4 + Vertex Resolution
Suppose the actual neutron capture position to be:

𝑥0′, 𝑦0′, 𝑧0′

We randomly generates a new position to model 
the position where the detector’s reconstructs it. 
the distribution  in each direction follows:

𝑓 𝑥𝑖 =
1

𝜎𝑟 2𝜋
𝑒

−
𝑥𝑖−𝑥𝑖

′ 2

2𝜎𝑟
2

Where the standard deviation 𝜎𝑟 will be found by 

𝜎𝑟 =
𝑅𝑣𝑒𝑟𝑡𝑒𝑥

1.878

We look for the 68.3% quantile line for 𝑑𝑁

𝑑Ω
 and set it as 

a standard deviation 𝜎𝜃 for using healpy.smoothing 
accounting for diffusion effect, which assumed to be 
gaussian.
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𝑑𝑁

𝑑𝐾𝑛′𝑑Ωn
′ = 𝑁𝐽𝑈𝑁𝑂 ⋅ න𝑑Ω𝜒 න 𝑑𝑡 න𝑑𝐾𝜒
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(The averaged removal energy are 𝐸𝑅 = 27.1 MeV. )

Quasi-Elastic (QEL) Scattering
( |𝑞3| > 350 MeV )

(Relativistic Fermi Gas model, pn ≤ 𝑝𝐹 = 221 MeV.)
Nuclear Effect:

1. Pauli Blocking: By adding a factor in 
𝑑𝜎𝑄𝐸𝐿

𝑑𝐾𝑛′𝑑Ω𝑛′
 for 𝑞3 < 2𝑝𝐹: 

 𝐵 𝑞3 =
3

4

q3

pF
1 −

1

12

q3

pF

2

2.   Final State Interaction: By using nuclear optical Potential to modify the knocked out energy:
ഥ𝐾𝑛

′ = 𝐾𝑛′ + min[0, −29.1 + (
40.9

𝐺𝑒𝑉2) 𝑝′ 2]
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𝑑𝜎𝑄𝐸𝑆

𝑑𝐾𝑛′𝑑Ω𝑛′
=

𝑔𝜒𝜙
2 𝑔𝑛𝜙

2

16𝜋
න𝑑 റ𝑝3 𝑃( റ𝑝)

4𝑚𝜒
2 + 𝑄2 1 +

෨𝑄2

4𝑚𝑛
2

𝑚𝜙
2 + 𝑄2 2 Fn Q2 𝐵(𝑞3)(𝛿(𝐸𝜒 + 𝐸𝑛 − 𝐸𝜒

′ − 𝐸𝑛
′ − 𝐸𝑟𝑒𝑚𝑜𝑣𝑎𝑙)

For CRBDM production and Earth attenuation:

For Neutron Knocked out Stage:



Earth Attenuation Effect    (Ema,2021) & (Bringmann,2019)
Assumptions:
1. The target particles are protons and neutrons (1:1) and we assume form factor 𝐹𝐴 𝑞2 ≈ 1 for light dark 

matter. 
2. No change in direction for DM at each scattering. 
3. The energy loss at each scattering as its averaged value:

𝑑𝐾𝜒(𝑧)

𝑑𝑧
= −𝑛𝑇 න

0

𝐾𝑇−𝑚𝑎𝑥

𝑑𝐾𝑇 𝐾𝑇

𝑑𝜎𝜒𝑇

𝑑𝐾𝑇
(𝐾𝜒, 𝐾𝑇)

This method serves as a conservative limit. It overestimates the stopping power of Earth Crust than simulation.
                   (Emken, 2018)

For now, I assumed Earth is constant density. 𝑛𝑇≈
𝑀𝐸

𝑚𝑝𝑉𝐸
 

We took JUNO’s geological location(East longitude 112 ° 31’ 05’’ and North latitude 22° 07’ 05’’) and use python 
library Astropy to look for the relative depth DM travelled at different sky location and time in 1 day. Hence, we 
found the Attenuated Kinetic Energy for BDM K𝜒.
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