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Boosted Dark Matter Directionality in Large Liquid Scintillators

* No Successful DM detection has announced yet.

* Hypothesis: The mass of DM particles in our galaxy
halo are too light and too cold to trigger observable
signals in current detectors.

* DM particles that been boosted to relativistic speed
by certain mechanism, could trigger our detectors,
and possibly leave a directional signature.
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Boosted Dark Matter Directionality in Large Liquid Scintillators

Neutron Capture

* Traditionally, charged particle 2.2(4.9)MeVy on H (C) |
directionality will be lost due to
scintillation light.

* We will use neutron interaction points to
reconstruct directionality.

* Lower energy threshold than Water
Cherenkov detector.

lights from C;; nucleus deexciation
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Boosted Dark Matter by Cosmic Rays

G
Detector’s nucleon < DM < Cosmic ray\@
g

We Follow [Ema,2021] scheme to obtain BDM Flux.

* DM density profile follows NFW
profile.

*Not draw in scale™

* Cylindrical Leaky-Box Model

* Cosmic rays(p and He only ) are
assumed to be isotropic and
Leaky-Box homogeneous.
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Boosted Dark Matter Flux

DM model: Dirac fermion x with a scalar mediator ¢ to

interact with Standard Model particle . LIS cosmic ray Flux
—
do D(b,1 > dd do
D(b,l)=f py - dl X _ (')Zf dK, ——A 204
Lo.s dK,dQ "~ m, K dK,dQ  dK,
A Amin \ J
Found by NFW profile with Cylindrical Leaky Box (Galactic Disk Size) DM-Nucleus Coherent Scattering

D-factor Log Map

DM Flux Peaked at
Galactic Center

24.1095 log10(D) 26.1638




Earth Attenuation Effect (Ema,2021) & (Bringmann,2019)

Assumptions:

1. The energy loss at each scattering as its averaged value:

dK, (z Kr—max do
)(( ) . f dKT KT xXT
0

dz 7 dKr (K_X’ KT)

2. The target particles are protons and neutrons (1:1) and we assume
form factor F,(g?) ~ 1.

3. No change in direction for DM at each scattering.

This approximation serves as a conservative limit.
It overestimates the stopping power of Earth Crust than simulation.
(Emken, 2018)
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DM Sky Map (Before Attenuation) DM Sky Map (After Attenuation)

e | e - .
9209.3 grae, Ly st 769715 34.1531 gra; Lyr st 2854.52
Total Counts: 426140.52 yr—! Total Counts: 1601.12 yr—!

Ratio of DM Sky Map

K,(K,) = [10 MeV ~ 10 GeV]

m, = 1MeV
mg = 1GeV
g, = 3.68 x 1073* cm? [ -

0 o 0.00832426 10



y Carbon _ - d
Nucleus _ - -
- \ Hn,
7 >
X
Kinematics:
* Quasi-Elastic (QEL) Scattering, |g3| > 350 MeV ~ o
« Relativistic Fermi Gas model, pp = 221 MeV. E, | Ey] Ey En
«  (Eg)=27.1MeV. 0| 4+ |Px| = |* 0 +
'sin®,,’
Nuclear Effect: ](_() ;;321 oy p’coan’
+  Pauli Blocking -1 2 ks P €OSTn

Neutron Triggered Rate: (Lin,2025) (Bodek, 2019)

an — N fdn fdtde dby
dK,'dq. ~— JUNO X

dO-QEL

Y dK,dQ, dK,'dQ,’

(K)(' Kn’r Qn,)

Final State Interaction
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Neutron Spectrum (After Emission)
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Neutron Emlssmn Sky Map

Ky, =[5 MeV,1 GeV]

— 1 MeV q |
My =1 Me 0.907931 g yrsr') 12,7525
mg = 1GeV

s, =368x10-*cmz  Total Counts: 58.53 yr~1 ’



Simulated Capture Angle in Geant4 + Vertex Resolution

Foreach K,, bin, N = 10000

K,=10.0 MeV K,=10.0 MeV
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Oc [°]

Capture angle 6¢ reconstruction with vertex resolutions

—&— Perfect: 68% quantile

Rint = 4 cm: 68% quantile
—®— Ry = 10 cm: 68% quantile
—8— Rjy = 30 cm: 68% quantile

100

Reconstructed Capture (Deexcite) Position

Actual Capture (Deexcite) Position

‘The vertex reconstruction bias is kept
within 4 cm level throughout the
detector (JUNO) and resolution for
events with around 1 MeV energy
deposition is estimated to be
approximately 9 cm. (Takenaka, 2025)

109 | 101 | 102 | 103
Kn [MeV] 15



Before Diffusion After Diffusion

Neutron Emlssmn Sky Map Neutron Sky Map (After lefusmn)
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Background Estimation:
We only considered the Indistinguishable BG:
Atmospheric Neutrino-Neutron Neutral-Current QEL interaction.

2 o
10 E —— Model-G
10 :g---- Model-N1 ’
= E — — Model-N35 ,
_l:;“ lE a
Z /,/ Energy transfer forv — C'? NC interacion in LS
s VE 7 We choose Model-G, which is GENIE with RFGs

% 10°2 h_«-" QEL (Cheng,2021)
T |

107

1(}_4_ ] T

| 10 10? 10° 10*

(Cheng,2021) @ [MeV]

For 5yrs with 18.3 ktons in JUNO for K;, = [5 MeV, 1 GeV]
Nps = 1131.05
We also assume they will be isotropic
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Likelihood and Constraint:

10—33
To obtain a 95% CL line, we used joint

likelihood function for the 768 pixels: — — =y

-5
B k;!

Where A; = ng + nge, ki = npc.

Then we use the log likelihood ratio:
(Cowan, 2013)

L(Ns)
"L(Ng = 0)

TS = —-21 = 2.71

JUNO-all-sky: 95% CL [This work]
We also plot the all-sky curve, with

JUNO-directionality: 95% CL [This work]

one single “All-sky” binis used . 10-35

100 2 x 100 3x10° 4x 100 6x 100

m, [MeV]
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Conclusion:

* Neutrons retain the directional sighature of the BDM.

* Leveraging this directionality provides a sightly better constraint than a
single ‘All-Sky’ bin, with the enhancement becoming more significant at
higher DM masses.

* Afurther refinement of the energy bin range is expected to increase the
signal-to-background ratio, thereby strengthening our constraints.
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Thank you!
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Neutron Diffusion: Geant4

Physics list:
1. G4HadronPhysicsFTFP_BERT_HP() A
. _ Neutron Capture
2. G4HadronElasticPhysics() 2.2 (4.9) MeV y on H (C) |
3. G4EmStandardPhysics()

Configuration:
1. Linear alkylbenzene(LAB)
2. 2,5-diphenyloxazole (PPO)
3. p-bis-(o-methylstyryl)-benzene (bis-MSB)

Chemicals Composition Density (g/cm*3) d=x%+y?+ 22

C=18, H=30 0.855985 (99.6%) 8, = arccos (z)
d
PPO C=15, H=11, N=1, O=1 0.003 (0.3%) ’
Bis-MSB C=24, H=22 0.000015

(0,0,0)
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Inteaction Time [us]

Interaction Distance [cm]

Single-nCap Interaction Information with perfect vertex resolution

107 5

101 & N Neutron Capture A
- —— nCap: Median (~2OO HS) I

‘ nCap: 25% - 75% Quartile Range
Secondary: Median
Secondary: 25% - 75% Quartile Range

102 3 S

1073 4

Sl p— nCap: Median

nCap: 25% - 75% Quartile Range
Secondary: Median
250 1 Secondary: 25% - 75% Quartile Range

(~10ns)

(Proton recoil,
Inelastic
scattering.....)

200 - A= 4 . |
150 -

100 s >

(0,0,0)
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Set at time cut when doing analysis!
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Filtering of Single Neutron Capture Event

Percentage for Single Neutron Capture Event

Secondary neutrons

100

80

60

Inelastic

40 4 Scattering

Percentage (%)

20 7

K, (MeV)
Primary neutron
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Simulated Capture Angle in Geant4 + Vertex Resolution

Single-nCap angle 6¢ reconstruction with vertex resolution Ryczp = 4 ¢cm, and different Ry

—— lIdeal: 68% quantile
Ideal: 25% - 75% Quartile Range

Rint = 4 cm: 68% quantile

Rint = 4 cm: 25% - 75% Quartile Range
Rint = 10 cm: 68% quantile

Rint = 10 cm: 25% -

75% Quartile Range
Rint = 30 cm: 68% quantile
Rint = 30 cm: 25% - 75% Quartile Range

Suppose the actual neutron capture position to be:
(x0',¥0', Z0")

We randomly generates a new position to model
the position where the detector’s reconstructs it.
the distribution in each direction follows:

2
(xi=x;)

2
e 207

f(x) =Gr\/%

Where the standard deviation o, will be found by

Rvertex

O' ==
" 1.878

T T T T
101 100 101 102

Kn [MeV]

We look for the 68.3% quantile line for Z—g and set it as

a standard deviation oy for using healpy.smoothing
accounting for diffusion effect, which assumed to be
gaussian.




an =N fdﬂ fdtjd Ay doger K. K., 0,
dK,'dq. ~— JUNO X dK,dQ, dK’dQ’( K’y On')

Carbon -y
Y Nucleus -="
_ - - Quasi-Elastic (QEL) Scattering
-, (|gs| > 350 MeV)
x Hn
VA >
X
_— - _ - B I _ - _ -
E, Ey ’-Iix Ey Er
0 Px| _ x 0 0
Lk | PZ | K, | |p’cosB), | |0
(Relativistic Fermi Gas model, p, < pr = 221 MeV.) (The averaged removal energy are Er = 27.1 MeV. )

Nuclear Effect:

1. Pauli Blocking: By adding a factor in%for q3 < 2pg:

3y _ 3lasl (|Q3|)
Blq )_4 Pr (1 12\ pr

2. Final State Interaction: By using nuclear optical Potential to modify the knocked out energy:

Ky = Ky’ + min[0,-29.1 + (=) [p'|*] ”




For CRBDM production and Earth attenuation:

% 1 giqﬁg?\,é (—t + 4mi) (—t + 4mi) 5
dK;  Kmax 167s (m2 — t)2

For Neutron Knocked out Stage:

n

m
2 Fn(QZ)B(qB)(5(EX + En _ E),( _ E1,1 _ Eremoval)

dogEs IypIne - .
— dp3 P
dK,'dQ,’ 167 f P~ P(
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Earth Attenuation Effect (Ema,2021) & (Bringmann,2019)

Assumptions:

1. The target particles are protons and neutrons (1:1) and we assume form factor F,(g?) = 1 for light dark
matter.

2. No change in direction for DM at each scattering.
3. The energy loss at each scattering as its averaged value:

dR ()
dz

Kr—max d
= _nTj dKr Kt ——— dK ( , Kr)
0

This method serves as a conservative limit. It overestimates the stopping power of Earth Crust than simulation.
(Emken, 2018)
Mg
mpVE

For now, | assumed Earth is constant density. ny=

We took JUNQO’s geological location(East longitude 112 ° 31’ 05’ and North latitude 22° 07’ 05’’) and use python
library Astropy to look for the relative depth DM travelled at different sky location and time in 1 day. Hence, we
found the Attenuated Kinetic Energy for BDM K, .
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