Samuel S.H. Tse¹, Qishan Liu^{1,3}, Kenny C.Y. Ng¹, Koun Choi², Yufeng Li³

¹The Chinese University of Hong Kong, Hong Kong, China ²Center for Underground Physics, IBS, Daejeon, Korea ³Institute of High Energy Physics, Beijing, China

- No Successful DM detection has announced yet.
- Hypothesis: The mass of DM particles in our galaxy halo are too light and too cold to trigger observable signals in current detectors.
- DM particles that been boosted to relativistic speed by certain mechanism, could trigger our detectors, and possibly leave a directional signature.

$$\frac{N_S}{N_{PC}} = \frac{1}{10}$$

• Traditionally, charged particle directionality will be lost due to scintillation light.

• We will use **neutron interaction points** to reconstruct directionality.

 Lower energy threshold than Water Cherenkov detector.

lights from C_{11} nucleus deexciation

Outline:

2. Earth Crust BDM Flux From Stopping DM Milky Way 3. **Neutrons DM Knocking** Diffuse and Neutrons Capture -100 -150 -200 -150 -100 -50 0

Boosted Dark Matter by Cosmic Rays

Detector's nucleon \leftrightarrow DM \leftrightarrow Cosmic ray

We Follow [Ema, 2021] scheme to obtain BDM Flux.

DM density profile follows NFW profile.

Cylindrical Leaky-Box Model

 Cosmic rays(p and He only) are assumed to be isotropic and homogeneous.

Boosted Dark Matter Flux

DM model: Dirac fermion χ with a scalar mediator ϕ to interact with Standard Model particle .

$$D(b,l) = \int_{l.o.s} \rho_{\chi} \cdot dl$$

$$\frac{\mathrm{d}\Phi_{\chi}}{\mathrm{d}K_{\chi}\mathrm{d}\Omega} = \frac{\mathrm{D}(\mathrm{b},\mathrm{l})}{\mathrm{m}_{\chi}} \sum_{A} \int_{K_{A_{min}}}^{\infty} dK_{A} \frac{d\Phi_{A}}{dK_{A}\mathrm{d}\Omega} \cdot \frac{d\sigma_{A\chi}}{dK_{\chi}}$$

Found by NFW profile with Cylindrical Leaky Box (Galactic Disk Size)

DM-Nucleus Coherent Scattering

LIS cosmic ray Flux

DM Flux Peaked at Galactic Center

Earth Attenuation Effect (Ema, 2021) & (Bringmann, 2019)

Assumptions:

1. The energy loss at each scattering as its averaged value:

$$\frac{d\overline{K_{\chi}}(z)}{dz} = -n_T \int_0^{K_T - max} dK_T K_T \frac{d\sigma_{\chi T}}{dK_T} (\overline{K_{\chi}}, K_T)$$

2. The target particles are protons and neutrons (1:1) and we assume form factor $F_A(q^2) \approx 1$.

3. No change in direction for DM at each scattering.

This approximation serves as a **conservative limit**.

It **overestimates the stopping power of Earth Crust** than simulation.

(Emken, 2018)

Neutron Triggered Rate: (Lin, 2025) (Bodek, 2019)

$$\frac{dN}{dK_{n}'d\Omega_{n}'} = N_{JUNO} \cdot \int d\Omega_{\chi} \int dt \int d\overline{K}_{\chi} \frac{d\overline{\Phi}_{\chi}}{d\overline{K}_{\chi}d\Omega_{\chi}} \cdot \frac{d\sigma_{QEL}}{dK_{n}'d\Omega_{n}'} (\overline{K}_{\chi}, K_{n}', \theta_{n}')$$

Kinematics:

- Quasi-Elastic (QEL) Scattering, $|q_3| > 350$ MeV
- Relativistic Fermi Gas model, $p_F=221$ MeV.
- $\langle E_R \rangle = 27.1$ MeV.

Nuclear Effect:

- Pauli Blocking
- Final State Interaction

$$\begin{bmatrix} \overline{E}_{\chi} \\ 0 \\ 0 \\ \overline{k} \end{bmatrix} + \begin{bmatrix} E_{N} \\ p_{\chi} \\ py \\ pz \end{bmatrix} = \begin{bmatrix} E_{\chi}' \\ k_{\chi} \\ k_{y} \\ k_{z} \end{bmatrix} + \begin{bmatrix} E_{N} \\ 0 \\ p'sin\theta_{n}' \\ p'cos\theta'_{n} \end{bmatrix} + \begin{bmatrix} E_{R} \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Neutron Emission Sky Map

 $\overline{K}'_{N} = [5 MeV, 1 GeV]$

$$m_\chi = 1 \text{ MeV}$$
 $m_\phi = 1 \text{ GeV}$ $\bar{\sigma}_n = 3.68 \times 10^{-34} \text{ cm}^2$

$$\frac{dN}{dt \, d\Omega'_N} \, [yr^{-1} \, sr^{-1}])$$
 12.7525

Total Counts: 58.53 yr⁻¹

Simulated Capture Angle in Geant4 + Vertex Resolution

For each K_n bin, N = 10000

Reconstructed Capture (Deexcite) Position

Actual Capture (Deexcite) Position

'The vertex reconstruction bias is kept within 4 cm level throughout the detector (JUNO) and resolution for events with around 1 MeV energy deposition is estimated to be approximately 9 cm.' (Takenaka, 2025)

Before Diffusion

After Diffusion

Neutron Sky Map (After Diffusion)

0.907931 $\frac{dN}{dt \, d\Omega_N} \, [yr^{-1} \, sr^{-1}])$ 12.7525

 $\frac{\Delta N_{max}}{\Delta N_{min}} = 14.01$

$$\frac{\Delta N_{max}}{\Delta N_{min}} = 5.61$$

$$m_\chi=1~{
m MeV}$$
 $m_\phi=1~{
m GeV}$ $\overline{\sigma}_n=3.68 imes10^{-34}~{
m cm}^2$ $\overline{K}_n'=[5~{
m MeV},1~{
m GeV}]$

Background Estimation:

We only considered the Indistinguishable BG:

Atmospheric Neutrino-Neutron Neutral-Current QEL interaction.

Energy transfer for $\nu - \mathcal{C}^{12}$ NC interacion in LS We choose Model-G, which is GENIE with RFGs (Cheng, 2021)

For 5 yrs with 18.3 ktons in JUNO for $\overline{K}'_n = [5 \ MeV, 1 \ GeV]$ $N_{BG} \approx 1131.05$

We also assume they will be isotropic

Likelihood and Constraint:

To obtain a 95% CL line, we used joint likelihood function for the 768 pixels:

$$L = \prod_{i}^{N=768} \frac{\lambda_i^{k_i} e^{-\lambda_i}}{k_i!}$$

Where $\lambda_i = n_S + n_{BG}$, $k_i = n_{BG}$.

Then we use the log likelihood ratio: (Cowan, 2013)

$$TS = -2ln \frac{L(N_S)}{L(N_S = 0)} = 2.71$$

We also plot the all-sky curve, with one single "All-sky" bin is used .

Conclusion:

- Neutrons retain the directional signature of the BDM.
- Leveraging this directionality provides a sightly better constraint than a single 'All-Sky' bin, with the enhancement becoming more significant at higher DM masses.
- A further refinement of the energy bin range is expected to increase the signal-to-background ratio, thereby strengthening our constraints.

Thank you!

Backup Slides

Neutron Diffusion: Geant4

Physics list:

- G4HadronPhysicsFTFP_BERT_HP()
- 2. G4HadronElasticPhysics()
- 3. G4EmStandardPhysics()

Configuration:

- Linear alkylbenzene(LAB)
- 2. 2,5-diphenyloxazole (PPO)
- 3. p-bis-(o-methylstyryl)-benzene (bis-MSB)

Chemicals	Chemicals Composition	Density (g/cm^3)
LAB	C=18, H=30	0.855985 (99.6%)
PPO	C=15, H=11, N=1, O=1	0.003 (0.3%)
Bis-MSB	C=24, H=22	0.000015

Filtering of Single Neutron Capture Event

Simulated Capture Angle in Geant4 + Vertex Resolution

Suppose the actual neutron capture position to be:

$$(x_0', y_0', z_0')$$

We randomly generates a new position to model the position where the detector's reconstructs it. the distribution in each direction follows:

$$f(x_i) = \frac{1}{\sigma_r \sqrt{2\pi}} e^{-\frac{(x_i - x_i')^2}{2\sigma_r^2}}$$

Where the standard deviation σ_r will be found by

$$\sigma_r = \frac{R_{vertex}}{1.878}$$

We look for the 68.3% quantile line for $\frac{dN}{d\Omega}$ and set it as a standard deviation σ_{θ} for using healpy.smoothing accounting for diffusion effect, which assumed to be gaussian.

(Relativistic Fermi Gas model, $p_n \le p_F = 221$ MeV.)

(The averaged removal energy are $E_R=27.1$ MeV.)

Nuclear Effect:

1. Pauli Blocking: By adding a factor in $\frac{d\sigma_{QEL}}{dK_{n}'d\Omega_{n}'}$ for $q_3 < 2p_F$:

$$B(q^3) = \frac{3}{4} \frac{|q_3|}{p_F} \left(1 - \frac{1}{12} \left(\frac{|q_3|}{p_F} \right)^2 \right)$$

2. Final State Interaction: By using nuclear optical Potential to modify the knocked out energy:

$$\overline{K}'_n = K_n' + \min[0, -29.1 + (\frac{40.9}{C_0 V^2})|p'|^2]$$

For CRBDM production and Earth attenuation:

$$\frac{d \sigma_{\phi}}{d K_f} = \frac{1}{K_{\text{max}}} \frac{g_{\chi \phi}^2 g_{N \phi}^2}{16 \pi s} \frac{\left(-t + 4 m_{\chi}^2\right) \left(-t + 4 m_A^2\right)}{\left(m_{\phi}^2 - t\right)^2} n_A^2 F_A^2(-t) \Theta(K_{\text{max}} - K_f),$$

For Neutron Knocked out Stage:

$$\frac{d\sigma_{QES}}{dK_{n}'d\Omega_{n}'} = \frac{g_{\chi\phi}^{2}g_{n\phi}^{2}}{16\pi} \int d\vec{p}^{3} P(\vec{p}) \frac{\left(4m_{\chi}^{2} + Q^{2}\right)\left(1 + \frac{\tilde{Q}^{2}}{4m_{n}^{2}}\right)}{\left(m_{\phi}^{2} + Q^{2}\right)^{2}} F_{n}(Q^{2})B(q^{3})(\delta(E_{\chi} + E_{n} - E_{\chi}' - E_{n}' - E_{removal})$$

Earth Attenuation Effect (Ema, 2021) & (Bringmann, 2019)

Assumptions:

- 1. The target particles are protons and neutrons (1:1) and we assume form factor $F_A(q^2) \approx 1$ for light dark matter.
- 2. No change in direction for DM at each scattering.
- 3. The energy loss at each scattering as its averaged value:

$$\frac{d\overline{K_{\chi}}(z)}{dz} = -n_T \int_0^{K_T - max} dK_T K_T \frac{d\sigma_{\chi T}}{dK_T} (\overline{K_{\chi}}, K_T)$$

This method serves as a conservative limit. It overestimates the stopping power of Earth Crust than simulation. (Emken, 2018)

For now, I assumed Earth is constant density. $n_T \approx \frac{M_E}{m_p V_E}$

We took JUNO's geological location(East longitude 112 ° 31' 05'' and North latitude 22° 07' 05'') and use python library Astropy to look for the relative depth DM travelled at different sky location and time in 1 day. Hence, we found the Attenuated Kinetic Energy for BDM $\overline{K_{\chi}}$.