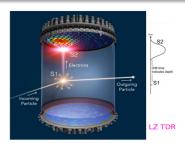
ALETHEIA: Hunting for low-mass dark matter with liquid helium TPCs

The XIX International Conference on Topics in Astroparticle and Underground Physics (TAUP 2025)

Junhui LIAO

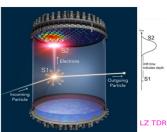
China Institute of Atomic Energy

1/28

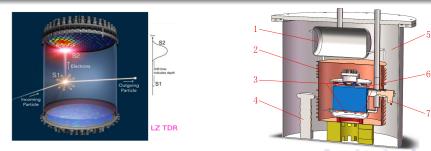

Outline

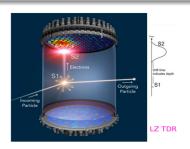
- ALETHEIA Introduction
- The progress of the ALETHEIA project
 - ALETHEIA prototype detector R&D on the 30g-V1 LHe
 - TPB coating on a PTFE chamber
 - SiPMs tests near LHe temperature.
 - A novel NR calibration on LHe detectors
 - Ongoing tests at CIAE
- Summary

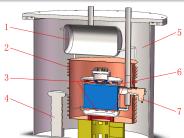
• ALETHEIA: A Liquid hElium Time projection cHambEr In dArk matter.


3/28

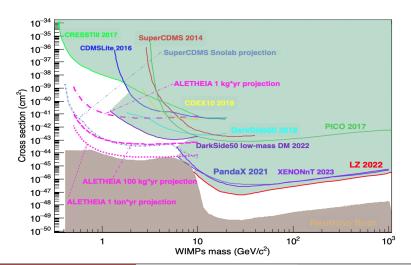
- ALETHEIA: A Liquid hElium Time projection cHambEr In dArk matter.
- ALETHEA is (i) truth or disclosure in philosophy, and (ii) the Roman goddess of truth.




- ALETHEIA: A Liquid hElium Time projection cHambEr In dArk matter.
- ALETHEA is (i) truth or disclosure in philosophy, and (ii) the Roman goddess of truth.
- LHe among the most clean bulk materials: nothing is solvable in LHe except ³He. which is extremely rare in nature.



- ALETHEIA: A Liquid hElium Time projection cHambEr In dArk matter.
- ALETHEA is (i) truth or disclosure in philosophy, and (ii) the Roman goddess of truth.
- LHe among the most clean bulk materials: nothing is solvable in LHe except ³He, which is extremely rare in nature.
- TPC is one of the best technologies in the community: LZ, PandaX, XENON; DarkSide, DEAP.


- ALETHEIA: A Liquid hElium Time projection cHambEr In dArk matter.
- ALETHEA is (i) truth or disclosure in philosophy, and (ii) the Roman goddess of truth.
- LHe among the most clean bulk materials: nothing is solvable in LHe except ³He, which is extremely rare in nature.
- TPC is one of the best technologies in the community: LZ, PandaX, XENON; DarkSide, DEAP.
- For details: Eur. Phys. J. Plus (2023) 138:128.

ALETHEIA NR channel: Projected sensitivities

• 1 ton*yr ALETHEIA can "touch down" the 8B solar ν fog (Assuming IBF, 50% Eff.).

ALETHEIA review, Oct 2019.

Aug 24 - 30, 2025, Xichang Qionghai Hotel

ALETHEIA review, Oct 2019.

• "It is possible that liquid helium could enable especially low backgrounds because of its powerful combination of intrinsically low radioactivity, ease of purification, and charge/light discrimination capability."

Aug 24 - 30, 2025, Xichang Qionghai Hotel

ALETHEIA collaborators so far

5 institutions (at present), ~ 20 members

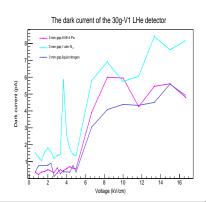
- CIAE (China Institute of Atomic Energy), ~ 10 researchers.
- FBK (not officially, but already cooperated in SiPMs related researches for 3+ years).
- Peking University, 1 + 2 (?) researchers.
- SCRI (Shanghai Cable Research Institute), 3 researchers.
- University of South China, 1 + N (?) researchers.

Outline

- ALETHEIA Introduction
- The progress of the ALETHEIA project
 - ALETHEIA prototype detector R&D on the 30g-V1 LHe
 - TPB coating on a PTFE chamber
 - SiPMs tests near LHe temperature.
 - A novel NR calibration on LHe detectors
 - Ongoing tests at CIAE
- Summary

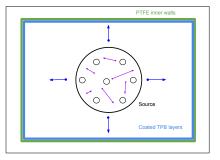
7/28

The R&D of the 30g-V1 LHe prototype.


• Left picture: the detector successfully cooled to 4 K.

The R&D of the 30g-V1 LHe prototype.

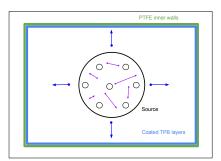
- Left picture: the detector successfully cooled to 4 K.
- Right plot: dark current is less than 10 pA under several circumstances.

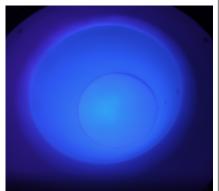


Outline

- ALETHEIA Introduction
- The progress of the ALETHEIA project
 - ALETHEIA prototype detector R&D on the 30g-V1 LHe
 - TPB coating on a PTFE chamber
 - SiPMs tests near LHe temperature.
 - A novel NR calibration on LHe detectors
 - Ongoing tests at CIAE
- Summary

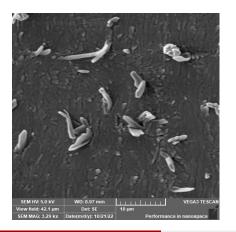
LHe light peaked 80 nm, TPB to convert into visible light.


• Left picture: the principle of TPB coating.

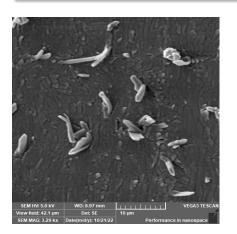

- TPB molecules move inside of the source.
- TPB molecules escape from the source then fly toward the inner walls of the cylindrical PTFE cells.

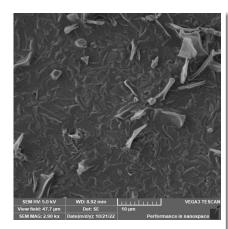
LHe light peaked 80 nm, TPB to convert into visible light.

- Left picture: the principle of TPB coating.
- Right plot: top view of the coated 10-cm size PTFE chamber.
- Published: Acta Phys. Sin. Vol. 71, No. 22 (2022) 229501



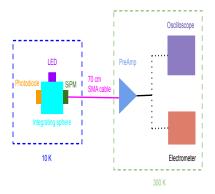
- TPB molecules move inside of the source.
- TPB molecules escape from the source then fly toward the inner walls of the cylindrical PTFE cells.


TPB coating film, exposed at 4 K.


• Left picture: SEM scanning imagine on TPB coated film experienced at 4 K.

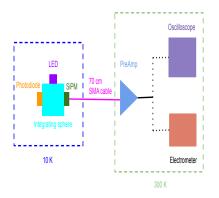
TPB coating film, exposed at 4 K.

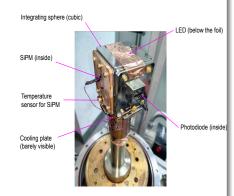
- Left picture: SEM scanning imagine on TPB coated film experienced at 4 K.
- Right plot: SEM scanning imagine on TPB coated film W/O cryogenic experience.
- Published in JINST, 2022 JINST 17 P12001.



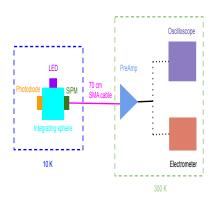
Outline

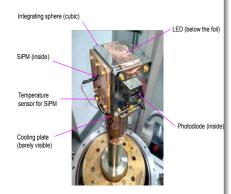
- ALETHEIA Introduction
- The progress of the ALETHEIA project
 - ALETHEIA prototype detector R&D on the 30g-V1 LHe
 - TPB coating on a PTFE chamber
 - SiPMs tests near LHe temperature.
 - A novel NR calibration on LHe detectors
 - Ongoing tests at CIAE
- Summary


PDE test setup.

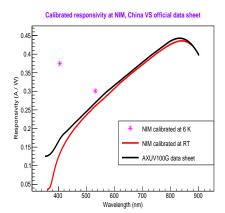

• Left picture: Schematic drawing.

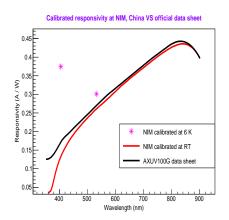
PDE test setup.

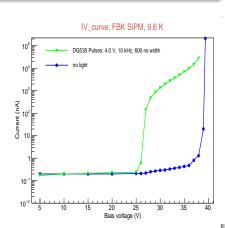

- Left picture: Schematic drawing.
- Right plot: experimental setup.



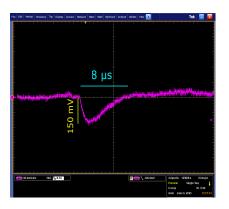
PDE test setup.

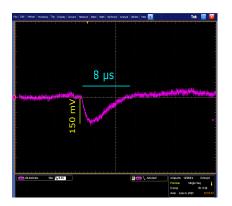

- Left picture: Schematic drawing.
- Right plot: experimental setup.
- Paper submitted to NIM(A), arXiv: 2311.10497 (not synchronized to the submission)

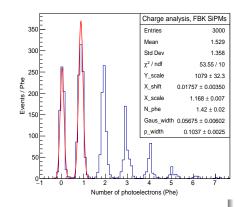

Photodiode calibration at 6 K and SiPMs' DCR at 10 K.


 Left picture: Photodiode responsitivity calibration at 6 K at the National Institute of Metrology (NIM).

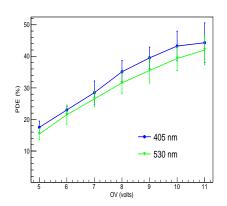
Photodiode calibration at 6 K and SiPMs' DCR at 10 K.

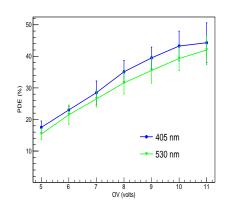

- Left picture: Photodiode responsitivity calibration at 6 K at the National Institute of Metrology (NIM).
- Right plot: SiPMs I-V curve at 10 K, W and W/O weak light.

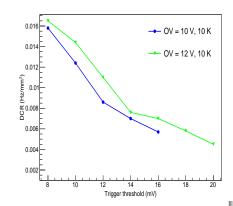

SiPMs' raw signals and charge spectrum and its fit at 10 K.


Left picture: a typical SiPMs raw signal measured at 7 K at CIAE.

SiPMs' raw signals and charge spectrum and its fit at 10 K.


- Left picture: a typical SiPMs raw signal measured at 7 K at CIAE.
- Right plot: Charge histogram (T = 10 K, OV = 6 V), and Gaussian convoluted Poisson fit.


FBK SiPMs PDE @ 10 K and 7 K, 405 and 530 nm; and AP.

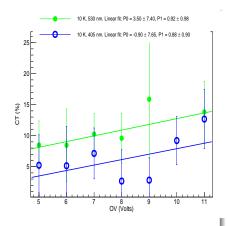

- FBK NUV-HD-Cryo SiPMs, ~ 100 mm²; Lowest temperature measured.
- Left plot: PDE ≥ 40% at OV 10+ V.

FBK SiPMs PDE @ 10 K and 7 K, 405 and 530 nm; and AP.

- FBK NUV-HD-Cryo SiPMs, ~ 100 mm²; Lowest temperature measured.
- Left plot: PDE ≥ 40% at OV 10+ V.

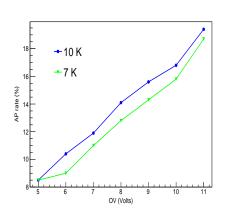
AP and CT tests 10 K and 7 K.

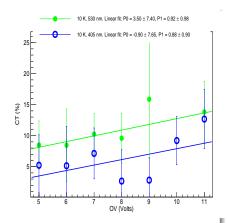
• Left picture: AP results.



AP and CT tests 10 K and 7 K.

Left picture: AP results.


• Right plot: CT results



AP and CT tests 10 K and 7 K.

- Left picture: AP results.
- Right plot: CT results
- Both AP and CT consistent with similar version SiPMs tested at 40 K by DS-20k

Outline

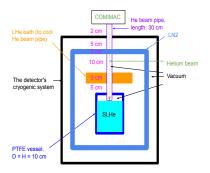
- ALETHEIA Introduction
- The progress of the ALETHEIA project
 - ALETHEIA prototype detector R&D on the 30g-V1 LHe
 - TPB coating on a PTFE chamber
 - SiPMs tests near LHe temperature.
 - A novel NR calibration on LHe detectors
 - Ongoing tests at CIAE
- Summary

Introduction

Traditional NR calibration: implementing fast neutrons

 \bullet Difficult to get \sim 10 keV neutrons from an accelerator, a generator, or a source.

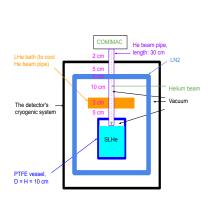
Introduction

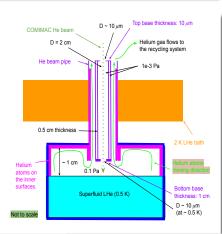

Traditional NR calibration: implementing fast neutrons

- Difficult to get ~ 10 keV neutrons from an accelerator, a generator, or a source.
- Calibrating results have significant uncertainties, ~ 30%+.

Introduction

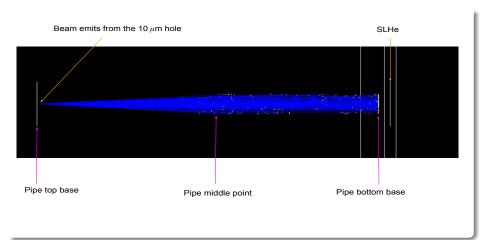
Traditional NR calibration: implementing fast neutrons


- Difficult to get ~ 10 keV neutrons from an accelerator, a generator, or a source.
- Calibrating results have significant uncertainties, ~ 30%+.



Introduction

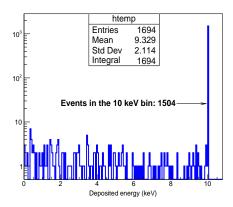
Traditional NR calibration: implementing fast neutrons


- Difficult to get ~ 10 keV neutrons from an accelerator, a generator, or a source.
- Calibrating results have significant uncertainties, ~ 30%+.

Beam introduction

G4 simulation shows a typical beam trajectory

Beam energy deposition in the journey before hitting SLHe


G4 simulation shows beam energy deposition in the journey is ignorable

~ 1 / 1000 of beam energy

$\begin{array}{c} \textbf{Medium} \\ \text{length} \\ \text{(cm)} \end{array}$	$2 \ \mathbf{keV} \ \alpha$			10 keV α			50 keV α		
	$\frac{\mathbf{G4}}{(\mathrm{keV})}$	$\begin{array}{c} \mathbf{NIST} \\ \mathrm{(keV)} \end{array}$	$\begin{array}{c} \mathbf{SRIM} \\ (\mathrm{keV}) \end{array}$	$rac{{f G4}}{({ m keV})}$	$\begin{array}{c} \textbf{NIST} \\ (\text{keV}) \end{array}$	$\begin{array}{c} \mathbf{SRIM} \\ (\mathrm{keV}) \end{array}$	$\frac{\mathbf{G4}}{(\mathrm{keV})}$	$\begin{array}{c} \mathbf{NIST} \\ \mathrm{(keV)} \end{array}$	$\begin{array}{c} \mathbf{SRIM} \\ \mathrm{(keV)} \end{array}$
30.0 (1e-3 Pa air)	5.0e-5		9.6e-5	1.2e-4		1.4e-4	2.8e-4		2.6e-4
0.5 (0.1 Pa He ₂)	1.7e-3	2.2e-3	2.3e-3	2.5e-3	2.6e-3	2.6e-3	5.2e-5	5.4e-3	5.4e-3
1.0 (0.1 Pa He ₂)	3.2e-3	4.3e-3	4.7e-3	5.0e-3	5.2e-3	5.3e-3	1.0e-2	1.1e-2	1.1e-2
2.0 (0.1 Pa He ₂)	6.2e-3	8.7e-3	9.3e-3	9.9e-3	1.0e-2	1.1e-2	2.1e-2	2.2e-2	2.2e-2
SLHe	1.6			9.2			50		

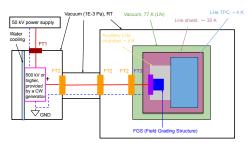
The events rate

- Events rate = (α particles in the beam) / (recorded meaningful events) \approx 1.5 E-4
- The beam rate can go up to 100 kHz \Rightarrow ~ 10 Hz events rate.
- Paper published, Eur. Phys. J. Plus (2024) 139:437.

Outline

- ALETHEIA Introduction
- The progress of the ALETHEIA project
 - ALETHEIA prototype detector R&D on the 30g-V1 LHe
 - TPB coating on a PTFE chamber
 - SiPMs tests near LHe temperature.
 - A novel NR calibration on LHe detectors
 - Ongoing tests at CIAE
- Summary

A 10-cm chamber, \sim 100 g LHe prototype detector is assembling.

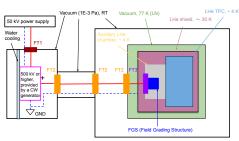

A 10-cm chamber, ~ 100 g LHe prototype detector is assembling.

Transmitting ~ MV (Million Volts) into an LHe TPC, 2310.12504

 10 kV/cm drift field is trade-off to get reasonable drift speed (2 m/s) and fraction of ion-e separation (~50%); 1m size TPC (~ 100 kg LHe) requires 1 MV.

FT1: 50 kV, RT, one side is air, another is vacuum

FT2: 500 kV or higher, both sides are RT or 77K and vacuum, no need to se

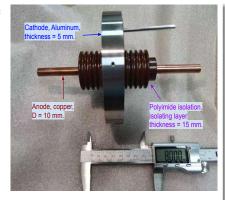

FT3: 500 kV or higher, one side is vacuum and \sim 30 K, another is LHe and 4 K, seal vacuum from LHe.

FGS: Immersed in 4 K I He

--- : Thin wall tubing (304 SS); ---- : Grounding cable or cathode.

Transmitting ~ MV (Million Volts) into an LHe TPC, 2310.12504

- 10 kV/cm drift field is trade-off to get reasonable drift speed (2 m/s) and fraction of ion-e separation (~50%); 1m size TPC (~ 100 kg LHe) requires 1 MV.
- Left plot: the preliminary scheme. Right plot: an electrode capable of delivering 100 kV is house-made at CIAE. Testing underway.


FT1: 50 kV. RT. one side is air, another is vacuum

FT2: 500 kV or higher, both sides are RT or 77K and vacuum, no need to see

FT3: 500 kV or higher, one side is vacuum and ~ 30 K, another is LHe and 4 K, seal vacuum from LHe.

FGS: Immersed in 4 K LHe

- : Thin wall tubing (304 SS): ----: Grounding cable or cathode

We demonstrated the viability of a single-phase LHe TPC

- (a) detector assembly,
- (b) wavelength-shifter TPB coating,
- (c) FBK NUV-HD-Cryo SiPMs' performance lines up well with ALETHEIA's requirements near LHe temperature.

We demonstrated the viability of a single-phase LHe TPC

- (a) detector assembly,
- (b) wavelength-shifter TPB coating,
- (c) FBK NUV-HD-Cryo SiPMs' performance lines up well with ALETHEIA's requirements near LHe temperature.

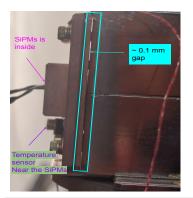
We demonstrated the viability of a single-phase LHe TPC

- (a) detector assembly,
- (b) wavelength-shifter TPB coating,
- (c) FBK NUV-HD-Cryo SiPMs' performance lines up well with ALETHEIA's requirements near LHe temperature.

We demonstrated the viability of a single-phase LHe TPC

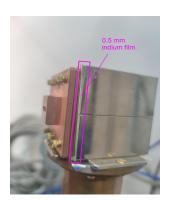
- (a) detector assembly,
- (b) wavelength-shifter TPB coating,
- (c) FBK NUV-HD-Cryo SiPMs' performance lines up well with ALETHEIA's requirements near LHe temperature.

The R&D on a dual-phase LHe TPC is currently underway.



Back up slides

Why we tested two temperatures: 10 K and 7 K


Invisible 0.1 mm gap existed due to warming-up and cooling-down cycles.

Why we tested two temperatures: 10 K and 7 K

- Invisible 0.1 mm gap existed due to warming-up and cooling-down cycles.
- After filling the gap with an indium film, the temperature decreased from 10 K to 7 K, consistent with COMSOL simulations.

