Tao Li (李涛) On behalf of the PandaX Collaboration TAUP2025 27th Aug. 2025 ## Light Bosonic Dark Matter: ALPs and DPs - > No positive results of WIMP motivate various theoretical models of low-mass dark matter. - > Axion-like particles (ALPs) - Pseudoscalar bosons, non-thermally produced via the misalignment mechanism, - Provide the necessary abundance of light cold dark matter. - Interact with SM particles through the axioelectric effect (similar to the photoelectric effect). $$\sigma_{ae} = \sigma_{pe} \frac{g_{ae}^2}{\beta} \frac{3E^2}{16\pi\alpha m_e^2} \left(1 - \frac{\beta^{\frac{2}{3}}}{3}\right)$$ #### Absorbed by a detector's atom, which later releases an electron in the final state. \triangleright Given that velocity of DM is 0.001c, and the local density is 0.3 GeV/cm³: $$R_{\text{ALP}} = \frac{1.47 \times 10^{19}}{A} g_{ae}^2 \cdot m_a \sigma_{pe} \text{ [kg}^{-1} \text{d}^{-1}]$$ ## Light Bosonic Dark Matter: ALPs and DPs #### > Dark photons (DPs) - Vector bosons, generated through inflationary perturbations. - Weakly interact with photons through kinetic mixing. $$\sigma_{\rm DP} = (e^2 c / 4\pi \alpha v) \cdot \kappa^2 \cdot \sigma_{pe}$$ $$R_{\rm DP} = \frac{4.7 \times 10^{23}}{A} \frac{(e\kappa)^2}{4\pi\alpha} \frac{\sigma_{pe}}{m_d} \ [\rm kg^{-1} d^{-1}]$$ #### > Experimental searches XENONnT is leading the limit at the masses below 140 keV/c², while GERDA and COSINE-100 set in the 150 keV/c² to 1 MeV/c². Eur. Phys. J. C 84, 940 (2024) A dedicated analysis focused on MS events (Compton-like process) is underway. ^{*} Only the absorption process is considered in our analysis. # PandaX - Particle and Astrophysical Xenon ## PandaX-4T Detector - ➤ Located at CJPL-II; - **Dual-phase Xe TPC: 3.7-ton natural LXe;** - ➤ 3-inch PMTs array: 169 top / 199 bottom; - \triangleright Primary scintillation signal (S1); Electroluminescence signal (S2); - > Precise energy, 3D position measurement. # PandaX-4T Physics Run | 2020/11
-
2021/04 | Commissioning (Run0) 95 days | | |-------------------------|--|--| | 2021/07
-
2021/10 | Tritium removal xenon distillation, gas flushing, etc | | | 2021/11
-
2022/05 | Physics run (Run1)
164 days | | | 2022/09
-
2023/12 | CJPL B2 hall construction xenon recuperation, detector upgrade | | | Current
Status | Physics run (Run2) | | | | | | ## **Energy Region Extension** - > Severe waveform saturation in the MeV range in Run0+1, while it has been solved by the updated base design in Run2. - > Waveform matching method to restore the gradient information. ## **Energy Reconstruction** #### > Energy reconstruction: $$E = 13.7 \text{ eV} \times \left(\frac{S1}{\text{PDE}} + \frac{S2_B}{\text{EEE} \times \text{SEG}_B}\right)$$ - Due to the dead channels and saturation of the top PMTs, S2_B is used. - Non-uniformity of detector response is corrected in three dimensions by ^{83m}Kr calibration data (41.5 keV); - Energy calibration from γ peaks (41.5 keV, 164 keV, 236 keV, 1460 keV); - **PDE**: photon detection efficiency for *S*1; - **EEE**: electron extraction efficiency; - **SEG**_B: single-electron gain for S2; ## **Energy Reconstruction** #### > Energy response model: • Energy resolution: $$\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} + b \cdot E + c$$ - Energy scale: $E = d \cdot \hat{E} + e$ - Calibrated by multiple mono-energetic peaks during dedicated calibration periods or physics runs. - The reconstructed spectrum is a convolution of the true energy spectrum. - The expected values $\mathcal{M}_0 = (a_0, b_0, c_0, d_0, e_0)^T$, with a 5x5 covariance matrix Σ_m . # Fiducial volume (FV) and exposure - ➤ The same FV is used in ¹³⁶Xe DBD analysis. - Confirmed for a high signal-to-noise ratio. - 625 (621) kg natural xenon within the FV; - 94.8 (163.5) live days of data from the initial data release; - > Target mass uncertainty: - Density of LXe (0.14% for Run0 and Run1); - FV selection (Run0: 1.6%, Run1: 2.1%); The difference between the geometrically calculated by ^{83m}Kr Calibration data. #### 1. Detector materials: ⁶⁰Co, ⁴⁰K, ²³²Th, ²³⁸U - Expected radioactivity from the HPGe Station. - Apply the **biasing** technology in the Monte-Carlo simulation. #### 2. solar neutrino $(pp + {}^{7}Be)$ • A many-body calculations for the structure, photoionization, and the neutrino-ionization of xenon. *Phys.Lett.B* 774 (2017) 656-661 #### 3. liquid Xenon | Components | Expected $(\times 10^2)$ | | |---------------------------|--------------------------|--| | $^{232}\mathrm{Th}$ | 9.7 ± 5.8 | | | $^{238}\mathrm{U}$ | 3.8 ± 2.8 | | | $^{60}\mathrm{Co}$ | 5.8 ± 3.5 | | | $^{40}{ m K}$ | 4.5 ± 2.0 | | | $^{85}{ m Kr}$ | 19.0 ± 4.9 | | | $^{214}\mathrm{Pb}$ | float | | | $^{212}\mathrm{Pb}$ | float | | | $^{136}\mathrm{Xe}$ | 352 ± 16 | | | $^{124}\mathrm{Xe}$ | 1.37 ± 0.21 | | | 125 Xe (Run0) | float | | | $^{125}\mathrm{I}$ | 0.66 ± 0.16 | | | ¹³³ Xe (Run0) | float | | | 164 keV (Run0) | 414 ± 17 | | | 164 keV (Run1) | float | | | 208 keV (Run0) | 37.8 ± 1.3 | | | 236 keV (Run0) | 565 ± 66 | | | 236 keV (Run1) | float | | | 380 keV (Run0) | 24.3 ± 1.2 | | | 408 keV (Run0) | 87.9 ± 3.2 | | | $pp+^7 \mathrm{Be} \ \nu$ | 2.22 ± 0.24 | | 2025/8/27 TAUP2025 bias source 6 #### > Biasing technology for material background - 1. Split the sensitive volume; - 2. Record "bias_hit" and "bias_source"; - 3. Generate the event by the "bias_source" from the previous run and increase the simulated numbers; - 4. Combine "bias_hit"; - "bias_hit": Energy deposition; - <u>"bias_source":</u> The information of particles that touch the inner boundary. bias source 5 By reusing the results of previous layers, more statistics can be achieved in less time. bias source 1 Expected #### 3. Liquid Xenon: - 136Xe DBD, 124Xe double electron capture, 125I, 85Kr; - 125Xe, 133Xe, 214Pb: float; - ²¹²Pb: float due to the strong dependence on the circulation conditions. - 127Xe (30 kg of xenon from above-ground in Run0), - 129mXe and 131mXe (neutron calibration during and after Run0). | Gaussian peaks | | | |----------------|--|--| | 164 keV | ^{131m} Xe gamma(IC) | | | 208 keV | L-shell EC + ¹²⁷ I 203 keV gamma | | | 236 keV | K-shell EC + ¹²⁷ I 203 keV gamma
^{129m} Xe 196.6 keV + 39.6 keV(IC) | | | 380 keV | L-shell EC + ¹²⁷ I 375 keV gamma | | | 408 keV | K-shell EC + ¹²⁷ I 375 keV gamma | | | Half-lives | [day] | |--------------------|-------| | ^{129m} Xe | 8.88 | | 131mXe | 11.8 | | ¹²⁷ Xe | 36.4 | | $^{85}{ m Kr}$ | 19.0 ± 4.9 | |--------------------------|-----------------| | $^{214}\mathrm{Pb}$ | float | | $^{212}\mathrm{Pb}$ | float | | $^{136}\mathrm{Xe}$ | 352 ± 16 | | $^{124}\mathrm{Xe}$ | 1.37 ± 0.21 | | 125 Xe (Run0) | float | | $^{125}\mathrm{I}$ | 0.66 ± 0.16 | | ¹³³ Xe (Run0) | float | | 164 keV (Run0) | 414 ± 17 | | 164 keV (Run1) | float | | 208 keV (Run0) | 37.8 ± 1.3 | | 236 keV (Run0) | 565 ± 66 | | 236 keV (Run1) | float | | 380 keV (Run0) | 24.3 ± 1.2 | | 408 keV (Run0) | 87.9 ± 3.2 | Components Gaussian peaks should be treated carefully, affecting the fit with similar signal energy. First estimated in PandaX-4T. - ➤ Time evolution of ¹²⁷Xe, ^{129m}Xe and ^{131m}Xe in Run0 - A larger FV for increasing statistics (2.4 tons); - Characterize with a <u>Gaussian + linear</u> function for each Gaussian component; - The measured half-lives of these xenon isotopes agree with the expected values. | Components | Expected | |-----------------|----------------| | 164 keV (Run0) | 414 ± 17 | | 164 keV (Run1) | float | | 208 keV (Run0) | 37.8 ± 1.3 | | 236 keV (Run0) | 565 ± 66 | | 236 keV (Run1) | float | | 380 keV (Run0) | 24.3 ± 1.2 | | 408 keV (Run0) | 87.9 ± 3.2 | ## Binned likelihood method #### > Likelihood definition $$L = \prod_{r=0}^1 \prod_{i=1}^{N_{ ext{bins}}} rac{(N_{r,i})^{N_{r,i}^{ ext{obs}}} e^{-N_{r,i}}}{N_{r,i}^{ ext{obs}}!} \underbrace{ rac{\mathcal{G}(\mathcal{M}_r; \mathcal{M}_r^0, \Sigma_r)}{\mathcal{G}(\mathcal{M}_r; \mathcal{M}_r^0, \Sigma_r)}}_{ ext{Detector response}} \underbrace{\prod_{j=1}^{N_{ ext{G}}} G(\eta_j; 0, \sigma_j)}_{ ext{Nuisance parameters}}$$ - N_i , N_i^{obs} : expected and observed numbers of events in the i_{th} energy bin; - n_s , n_b : the counts of signal s and background component b; - S_i, B_{b,i}: the i_{th} bin values of the normalized energy spectrum convolved with the five-parameter energy response model; #### **Systematic uncertainties:** | | Sources | Run0 | Run1 | |--------------------|----------------------------------|------------------------------|------------------------------| | Detector response | $a_0 \ [\sqrt{\mathrm{keV}}]$ | 0.43 ± 0.02 | 0.45 ± 0.02 | | | $b_0 \; [\mathrm{keV}^{-1}]$ | $(5\pm2)\times10^{-6}$ | $(5\pm2)\times10^{-6}$ | | | c_0 | $(-7 \pm 20) \times 10^{-4}$ | $(-7 \pm 22) \times 10^{-4}$ | | | d_0 | 0.9930 ± 0.0008 | 0.9989 ± 0.0009 | | | $e_0 \; [\mathrm{keV}]$ | 0.74 ± 0.06 | 1.25 ± 0.06 | | Overall efficiency | SS fraction (1 MeV/c^2) | $(96\pm4)\%$ | $(96 \pm 4)\%$ | | | Quality cut | $(99.87 \pm 0.02)\%$ | $(99.75 \pm 0.10)\%$ | | Signal selection | LXe density [g/cm ³] | 2.850 ± 0.004 | | | | FV uniformity [kg] | 625 ± 10 | 621 ± 13 | | Background model | | | | ## Limits on coupling constant - ➤ Raster scan for hypothetical Gaussian peaks in [30 keV/c², 1 MeV/c²] with 10 keV/c² per step. - \triangleright The global significance is 1.5 σ . No signal excess over background expectations is observed. - The upper limits on the event rate at 90% C.L. are set and converted to the upper limits of coupling strength: $$R_{\rm ALP} = \frac{1.2 \times 10^{19}}{A} g_{ae}^2 \cdot m_a \sigma_{pe} \ [\rm kg^{-1} d^{-1}]$$ $$R_{\rm DP} = \frac{4 \times 10^{23}}{A} \frac{(e\kappa)^2}{4\pi\alpha} \frac{\sigma_{pe}}{m_d} \ [\rm kg^{-1} d^{-1}],$$ The most competitive limits almost range from 150 keV/c² to 1 MeV/c², with an average improvement of 2.0 times better. # Summary - We searched for ALPs and DPs with masses up to 1 MeV/c² using 440 kg yr exposure of PandaX's physical dataset. - A detailed analysis of the time evolution of xenon isotopes and the biasing technology improve the background modeling. - Including energy response model convolution in the likelihood function results in a more rigorous treatment of systematic uncertainties. - No significant excess and most competitive limits in [150 keV/c², 1 MeV/c²], due to a combination of large exposure, low background rate, and broader energy range. # Thank you for listening~ Tao Li (李涛) On behalf of the PandaX Collaboration TAUP2025 27th Aug. 2025 > MS? # Searching for Signal in PandaX-4T - ➤ PandaX-4T has given the limits in [0, 30 keV/c²], while the allowed mass region is from (Details seen the next presentation) - $\sim \text{keV/c}^2$ to 1 MeV/c². - ➤ In this report, we have searched for ALPs/DPs with masses up to 1 MeV/c² using the data of PandaX-4T Run0 and Run1. - 1. Energy region extension (near MeV region); - 2. Background model (mono-energetic compone); - 3. Systematics uncertainty (energy response); # **Multi-physics Targets** - > Energy region from sub keV to several MeV. - ➤ Region of Interest (ROI) here: [25 keV, 1MeV]. # Signal in PandaX-4T detector - > monoenergetic peak related to the mass of ALP/DP, smeared by the response model. - \triangleright The mass points of ALP/DP are in [30 keV/c², 1 MeV/c²] with a step of 10 keV/c². - > ROI cut ([25, 1050] keV): efficiency ~100% > SS ratio in ROI: Ranging from 100% to 95.7% based on Monte-Carlo simulation; total detection efficiency = $\underline{\text{data quality cut efficiency}} \times \underline{\text{SS cut efficiency}} \times \underline{\text{ROI acceptance}}$. ### **Event selection** #### Data quality cuts efficiency: Run0: (99.87 ± 0.02) %, Run1: (99.75 ± 0.10) % - S1, S2, S1/S2: remove non-electron recoil and alpha events; - Top and bottom S1 charge asymmetry vs. drift time; #### > Single-site (SS) selection: - MeV-gamma event is mostly multi-site (MS) event, while the signal is mostly SS event; - Identifying SS and MS with PMT waveforms; - Validated with simulation and ²³²Th calibration data; Agreement in ROI is at 3.8% (Run0) and 3.7% (Run1), taken as systematic uncertainty later. 2025/8/27 - > Biasing technology for material background - 1. Split the sensitive volume; - 2. Record "bias_hit" and "bias_source"; - 3. Generate the event by the "bias_source" from the previous run and increase the simulated numbers; - 4. Combine "bias_hit"; - "bias_hit": Energy deposition; - <u>"bias_source":</u> The information of particles that touch the inner boundary. 5th run: 6th run: By reusing the results of previous layers, more statistics can be achieved in less time. #### Detector materials: - About 70 components from different locations. - Expected radioactivates from the HPGe Station. - Apply the **biasing** technology in the Monte-Carlo simulation. | Location | | Tcotono | | |----------------------|----------------------|---------------------|--| | Location 1 | Location 2 | Isotope | | | | Barrel | ⁶⁰ Co | | | Inner | Dome Bottom | $^{40}\mathrm{K}$ | | | vessel | Dome Top | $^{232}\mathrm{Th}$ | | | vesser | FlangeB | $^{238}\mathrm{U}$ | | | | FlangeF | $^{137}\mathrm{Cs}$ | | | | Barrel | ⁶⁰ Co | | | Outer | Dome Bottom | $^{40}\mathrm{K}$ | | | vessel | Dome Top | $^{232}\mathrm{Th}$ | | | vesser | FlangeB | $^{238}\mathrm{U}$ | | | | FlangeF | $^{137}\mathrm{Cs}$ | | | | Pady Pattom | ⁶⁰ Co | | | | Body Bottom | $^{40}\mathrm{K}$ | | | PMT | Body Top Base Bottom | $^{232}\mathrm{Th}$ | | | | | 238 U | | | | Base Top | $^{137}\mathrm{Cs}$ | | # Background-only Fit - ightharpoonup A background-only fit is performed prior to the signal fits, yielding a χ^2/NDF of 1.06. - The data are consistent with the background-only model, with a p-value of 0.51. (85 Kr is pulled slightly upward by 1.5 σ) | Components | Expected $(\times 10^2)$ | Fitted $(\times 10^2)$ | |---------------------|--------------------------|------------------------| | $^{232}\mathrm{Th}$ | 9.7 ± 5.8 | 12.7 ± 2.5 | | $^{238}{ m U}$ | 3.8 ± 2.8 | 6.6 ± 2.2 | | $^{60}\mathrm{Co}$ | 5.8 ± 3.5 | 9.3 ± 3.0 | | $^{40}\mathrm{K}$ | 4.5 ± 2.0 | 5.6 ± 1.9 | | $ m ^{85}Kr$ | 19.0 ± 4.9 | 26.4 ± 2.3 | | $^{214}\mathrm{Pb}$ | float | 352.9 ± 7.5 | | $^{212}\mathrm{Pb}$ | float | 18.6 ± 2.5 | | $^{136}\mathrm{Xe}$ | 352 ± 16 | 358.5 ± 9.1 | | $^{124}\mathrm{Xe}$ | 1.37 ± 0.21 | 1.41 ± 0.13 | | 125 Xe (Run0) | float | 6.48 ± 0.83 | | $^{125}\mathrm{I}$ | 0.66 ± 0.16 | 0.59 ± 0.13 | | 133 Xe (Run0) | float | 86.1 ± 2.2 | | 164 keV (Run0) | 414 ± 17 | 407.7 ± 6.4 | | 164 keV (Run1) | float | 4.67 ± 0.32 | | 208 keV (Run0) | 37.8 ± 1.3 | 37.88 ± 0.77 | | 236 keV (Run0) | 565 ± 66 | 560.8 ± 8.8 | | 236 keV (Run1) | float | 3.05 ± 0.32 | | 380 keV (Run0) | 24.3 ± 1.2 | 24.10 ± 0.66 | | 408 keV (Run0) | 87.9 ± 3.2 | 88.8 ± 1.6 | | $pp+^{7}$ Be ν | 2.22 ± 0.24 | 2.31 ± 0.23 | | | | | 2025/8/27