

Tao Li (李涛)

On behalf of the PandaX Collaboration

TAUP2025

27th Aug. 2025

Light Bosonic Dark Matter: ALPs and DPs

- > No positive results of WIMP motivate various theoretical models of low-mass dark matter.
- > Axion-like particles (ALPs)
 - Pseudoscalar bosons, non-thermally produced via the misalignment mechanism,
 - Provide the necessary abundance of light cold dark matter.
 - Interact with SM particles through the axioelectric effect (similar to the photoelectric effect).

$$\sigma_{ae} = \sigma_{pe} \frac{g_{ae}^2}{\beta} \frac{3E^2}{16\pi\alpha m_e^2} \left(1 - \frac{\beta^{\frac{2}{3}}}{3}\right)$$

Absorbed by a detector's atom, which later releases an electron in the final state.

 \triangleright Given that velocity of DM is 0.001c, and the local density is 0.3 GeV/cm³:

$$R_{\text{ALP}} = \frac{1.47 \times 10^{19}}{A} g_{ae}^2 \cdot m_a \sigma_{pe} \text{ [kg}^{-1} \text{d}^{-1}]$$

Light Bosonic Dark Matter: ALPs and DPs

> Dark photons (DPs)

- Vector bosons, generated through inflationary perturbations.
- Weakly interact with photons through kinetic mixing.

$$\sigma_{\rm DP} = (e^2 c / 4\pi \alpha v) \cdot \kappa^2 \cdot \sigma_{pe}$$

$$R_{\rm DP} = \frac{4.7 \times 10^{23}}{A} \frac{(e\kappa)^2}{4\pi\alpha} \frac{\sigma_{pe}}{m_d} \ [\rm kg^{-1} d^{-1}]$$

> Experimental searches

XENONnT is leading the limit at the masses below 140 keV/c², while GERDA and COSINE-100 set in the 150 keV/c² to 1 MeV/c².

Eur. Phys. J. C 84, 940 (2024)

A dedicated analysis focused on MS events (Compton-like process) is underway.

^{*} Only the absorption process is considered in our analysis.

PandaX - Particle and Astrophysical Xenon

PandaX-4T Detector

- ➤ Located at CJPL-II;
- **Dual-phase Xe TPC: 3.7-ton natural LXe;**
- ➤ 3-inch PMTs array: 169 top / 199 bottom;
- \triangleright Primary scintillation signal (S1); Electroluminescence signal (S2);
- > Precise energy, 3D position measurement.

PandaX-4T Physics Run

2020/11 - 2021/04	Commissioning (Run0) 95 days	
2021/07 - 2021/10	Tritium removal xenon distillation, gas flushing, etc	
2021/11 - 2022/05	Physics run (Run1) 164 days	
2022/09 - 2023/12	CJPL B2 hall construction xenon recuperation, detector upgrade	
Current Status	Physics run (Run2)	

Energy Region Extension

- > Severe waveform saturation in the MeV range in Run0+1, while it has been solved by the updated base design in Run2.
- > Waveform matching method to restore the gradient information.

Energy Reconstruction

> Energy reconstruction:

$$E = 13.7 \text{ eV} \times \left(\frac{S1}{\text{PDE}} + \frac{S2_B}{\text{EEE} \times \text{SEG}_B}\right)$$

- Due to the dead channels and saturation of the top
 PMTs, S2_B is used.
- Non-uniformity of detector response is corrected in three dimensions by ^{83m}Kr calibration data (41.5 keV);
- Energy calibration from γ peaks (41.5 keV, 164 keV,
 236 keV, 1460 keV);

- **PDE**: photon detection efficiency for *S*1;
- **EEE**: electron extraction efficiency;
- **SEG**_B: single-electron gain for S2;

Energy Reconstruction

> Energy response model:

• Energy resolution:
$$\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} + b \cdot E + c$$

- Energy scale: $E = d \cdot \hat{E} + e$
- Calibrated by multiple mono-energetic peaks during dedicated calibration periods or physics runs.
- The reconstructed spectrum is a convolution of the true energy spectrum.
- The expected values $\mathcal{M}_0 = (a_0, b_0, c_0, d_0, e_0)^T$, with a 5x5 covariance matrix Σ_m .

Fiducial volume (FV) and exposure

- ➤ The same FV is used in ¹³⁶Xe DBD analysis.
 - Confirmed for a high signal-to-noise ratio.
 - 625 (621) kg natural xenon within the FV;
 - 94.8 (163.5) live days of data from the initial data release;

- > Target mass uncertainty:
 - Density of LXe (0.14% for Run0 and Run1);
 - FV selection (Run0: 1.6%, Run1: 2.1%);

The difference between the geometrically calculated by ^{83m}Kr Calibration data.

1. Detector materials: ⁶⁰Co, ⁴⁰K, ²³²Th, ²³⁸U

- Expected radioactivity from the HPGe Station.
- Apply the **biasing** technology in the Monte-Carlo simulation.

2. solar neutrino $(pp + {}^{7}Be)$

• A many-body calculations for the structure, photoionization, and the neutrino-ionization of xenon. *Phys.Lett.B* 774 (2017) 656-661

3. liquid Xenon

Components	Expected $(\times 10^2)$	
$^{232}\mathrm{Th}$	9.7 ± 5.8	
$^{238}\mathrm{U}$	3.8 ± 2.8	
$^{60}\mathrm{Co}$	5.8 ± 3.5	
$^{40}{ m K}$	4.5 ± 2.0	
$^{85}{ m Kr}$	19.0 ± 4.9	
$^{214}\mathrm{Pb}$	float	
$^{212}\mathrm{Pb}$	float	
$^{136}\mathrm{Xe}$	352 ± 16	
$^{124}\mathrm{Xe}$	1.37 ± 0.21	
125 Xe (Run0)	float	
$^{125}\mathrm{I}$	0.66 ± 0.16	
¹³³ Xe (Run0)	float	
164 keV (Run0)	414 ± 17	
164 keV (Run1)	float	
208 keV (Run0)	37.8 ± 1.3	
236 keV (Run0)	565 ± 66	
236 keV (Run1)	float	
380 keV (Run0)	24.3 ± 1.2	
408 keV (Run0)	87.9 ± 3.2	
$pp+^7 \mathrm{Be} \ \nu$	2.22 ± 0.24	

2025/8/27 TAUP2025

bias source 6

> Biasing technology for material background

- 1. Split the sensitive volume;
- 2. Record "bias_hit" and "bias_source";
- 3. Generate the event by the "bias_source" from the previous run and increase the simulated numbers;
- 4. Combine "bias_hit";
 - "bias_hit": Energy deposition;
 - <u>"bias_source":</u> The information of particles that touch the inner boundary.

bias source 5

By reusing the results of previous layers, more statistics can be achieved in less time.

bias source 1

Expected

3. Liquid Xenon:

- 136Xe DBD, 124Xe double electron capture, 125I, 85Kr;
- 125Xe, 133Xe, 214Pb: float;
- ²¹²Pb: float due to the strong dependence on the circulation conditions.
- 127Xe (30 kg of xenon from above-ground in Run0),
- 129mXe and 131mXe (neutron calibration during and after Run0).

Gaussian peaks		
164 keV	^{131m} Xe gamma(IC)	
208 keV	L-shell EC + ¹²⁷ I 203 keV gamma	
236 keV	K-shell EC + ¹²⁷ I 203 keV gamma ^{129m} Xe 196.6 keV + 39.6 keV(IC)	
380 keV	L-shell EC + ¹²⁷ I 375 keV gamma	
408 keV	K-shell EC + ¹²⁷ I 375 keV gamma	

Half-lives	[day]
^{129m} Xe	8.88
131mXe	11.8
¹²⁷ Xe	36.4

$^{85}{ m Kr}$	19.0 ± 4.9
$^{214}\mathrm{Pb}$	float
$^{212}\mathrm{Pb}$	float
$^{136}\mathrm{Xe}$	352 ± 16
$^{124}\mathrm{Xe}$	1.37 ± 0.21
125 Xe (Run0)	float
$^{125}\mathrm{I}$	0.66 ± 0.16
¹³³ Xe (Run0)	float
164 keV (Run0)	414 ± 17
164 keV (Run1)	float
208 keV (Run0)	37.8 ± 1.3
236 keV (Run0)	565 ± 66
236 keV (Run1)	float
380 keV (Run0)	24.3 ± 1.2
408 keV (Run0)	87.9 ± 3.2

Components

Gaussian peaks should be treated carefully, affecting the fit with similar signal energy.

First estimated

in PandaX-4T.

- ➤ Time evolution of ¹²⁷Xe, ^{129m}Xe and ^{131m}Xe in Run0
 - A larger FV for increasing statistics (2.4 tons);
 - Characterize with a <u>Gaussian + linear</u> function for each Gaussian component;
 - The measured half-lives of these xenon isotopes agree with the expected values.

Components	Expected
164 keV (Run0)	414 ± 17
164 keV (Run1)	float
208 keV (Run0)	37.8 ± 1.3
236 keV (Run0)	565 ± 66
236 keV (Run1)	float
380 keV (Run0)	24.3 ± 1.2
408 keV (Run0)	87.9 ± 3.2

Binned likelihood method

> Likelihood definition

$$L = \prod_{r=0}^1 \prod_{i=1}^{N_{ ext{bins}}} rac{(N_{r,i})^{N_{r,i}^{ ext{obs}}} e^{-N_{r,i}}}{N_{r,i}^{ ext{obs}}!} \underbrace{rac{\mathcal{G}(\mathcal{M}_r; \mathcal{M}_r^0, \Sigma_r)}{\mathcal{G}(\mathcal{M}_r; \mathcal{M}_r^0, \Sigma_r)}}_{ ext{Detector response}} \underbrace{\prod_{j=1}^{N_{ ext{G}}} G(\eta_j; 0, \sigma_j)}_{ ext{Nuisance parameters}}$$

- N_i , N_i^{obs} : expected and observed numbers of events in the i_{th} energy bin;
- n_s , n_b : the counts of signal s and background component b;
- S_i, B_{b,i}: the i_{th} bin values of the normalized energy spectrum convolved with the five-parameter energy response model;

Systematic uncertainties:

	Sources	Run0	Run1
Detector response	$a_0 \ [\sqrt{\mathrm{keV}}]$	0.43 ± 0.02	0.45 ± 0.02
	$b_0 \; [\mathrm{keV}^{-1}]$	$(5\pm2)\times10^{-6}$	$(5\pm2)\times10^{-6}$
	c_0	$(-7 \pm 20) \times 10^{-4}$	$(-7 \pm 22) \times 10^{-4}$
	d_0	0.9930 ± 0.0008	0.9989 ± 0.0009
	$e_0 \; [\mathrm{keV}]$	0.74 ± 0.06	1.25 ± 0.06
Overall efficiency	SS fraction (1 MeV/c^2)	$(96\pm4)\%$	$(96 \pm 4)\%$
	Quality cut	$(99.87 \pm 0.02)\%$	$(99.75 \pm 0.10)\%$
Signal selection	LXe density [g/cm ³]	2.850 ± 0.004	
	FV uniformity [kg]	625 ± 10	621 ± 13
Background model			

Limits on coupling constant

- ➤ Raster scan for hypothetical Gaussian peaks in [30 keV/c², 1 MeV/c²] with 10 keV/c² per step.
- \triangleright The global significance is 1.5 σ . No signal excess over background expectations is observed.
- The upper limits on the event rate at 90% C.L. are set and converted to the upper limits of coupling strength:

$$R_{\rm ALP} = \frac{1.2 \times 10^{19}}{A} g_{ae}^2 \cdot m_a \sigma_{pe} \ [\rm kg^{-1} d^{-1}]$$

$$R_{\rm DP} = \frac{4 \times 10^{23}}{A} \frac{(e\kappa)^2}{4\pi\alpha} \frac{\sigma_{pe}}{m_d} \ [\rm kg^{-1} d^{-1}],$$

The most competitive limits almost range from 150 keV/c² to 1 MeV/c², with an average improvement of 2.0 times better.

Summary

- We searched for ALPs and DPs with masses up to 1 MeV/c² using 440 kg yr exposure of PandaX's physical dataset.
 - A detailed analysis of the time evolution of xenon isotopes and the biasing technology improve the background modeling.
 - Including energy response model convolution in the likelihood function results in a more rigorous treatment of systematic uncertainties.
- No significant excess and most competitive limits in [150 keV/c², 1 MeV/c²], due to a combination of large exposure, low background rate, and broader energy range.

Thank you for listening~

Tao Li (李涛)

On behalf of the PandaX Collaboration

TAUP2025

27th Aug. 2025

> MS?

Searching for Signal in PandaX-4T

- ➤ PandaX-4T has given the limits in [0, 30 keV/c²], while the allowed mass region is from (Details seen the next presentation)
 - $\sim \text{keV/c}^2$ to 1 MeV/c².
- ➤ In this report, we have searched for ALPs/DPs with masses up to 1 MeV/c² using the data of PandaX-4T Run0 and Run1.
 - 1. Energy region extension (near MeV region);
 - 2. Background model (mono-energetic compone);
 - 3. Systematics uncertainty (energy response);

Multi-physics Targets

- > Energy region from sub keV to several MeV.
- ➤ Region of Interest (ROI) here: [25 keV, 1MeV].

Signal in PandaX-4T detector

- > monoenergetic peak related to the mass of ALP/DP, smeared by the response model.
- \triangleright The mass points of ALP/DP are in [30 keV/c², 1 MeV/c²] with a step of 10 keV/c².
- > ROI cut ([25, 1050] keV):

efficiency ~100%

> SS ratio in ROI:

Ranging from 100% to 95.7%

based on Monte-Carlo simulation;

total detection efficiency = $\underline{\text{data quality cut efficiency}} \times \underline{\text{SS cut efficiency}} \times \underline{\text{ROI acceptance}}$.

Event selection

Data quality cuts efficiency:

Run0: (99.87 ± 0.02) %, Run1: (99.75 ± 0.10) %

- S1, S2, S1/S2: remove non-electron recoil and alpha events;
- Top and bottom S1 charge asymmetry vs. drift time;

> Single-site (SS) selection:

- MeV-gamma event is mostly multi-site (MS) event, while the signal is mostly SS event;
- Identifying SS and MS with PMT waveforms;
- Validated with simulation and ²³²Th calibration data;

Agreement in ROI is at 3.8% (Run0) and 3.7% (Run1), taken as systematic uncertainty later.

2025/8/27

- > Biasing technology for material background
 - 1. Split the sensitive volume;
 - 2. Record "bias_hit" and "bias_source";
 - 3. Generate the event by the "bias_source" from the previous run and increase the simulated numbers;
 - 4. Combine "bias_hit";
 - "bias_hit": Energy deposition;
 - <u>"bias_source":</u> The information of particles that touch the inner boundary.

5th run:

6th run:

By reusing the results of previous layers, more statistics can be achieved in less time.

Detector materials:

- About 70 components from different locations.
- Expected radioactivates from the HPGe Station.
- Apply the **biasing** technology in the Monte-Carlo simulation.

Location		Tcotono	
Location 1	Location 2	Isotope	
	Barrel	⁶⁰ Co	
Inner	Dome Bottom	$^{40}\mathrm{K}$	
vessel	Dome Top	$^{232}\mathrm{Th}$	
vesser	FlangeB	$^{238}\mathrm{U}$	
	FlangeF	$^{137}\mathrm{Cs}$	
	Barrel	⁶⁰ Co	
Outer	Dome Bottom	$^{40}\mathrm{K}$	
vessel	Dome Top	$^{232}\mathrm{Th}$	
vesser	FlangeB	$^{238}\mathrm{U}$	
	FlangeF	$^{137}\mathrm{Cs}$	
	Pady Pattom	⁶⁰ Co	
	Body Bottom	$^{40}\mathrm{K}$	
PMT	Body Top Base Bottom	$^{232}\mathrm{Th}$	
		238 U	
	Base Top	$^{137}\mathrm{Cs}$	

Background-only Fit

- ightharpoonup A background-only fit is performed prior to the signal fits, yielding a χ^2/NDF of 1.06.
- The data are consistent with the background-only model, with a p-value of 0.51. (85 Kr is pulled slightly upward by 1.5 σ)

Components	Expected $(\times 10^2)$	Fitted $(\times 10^2)$
$^{232}\mathrm{Th}$	9.7 ± 5.8	12.7 ± 2.5
$^{238}{ m U}$	3.8 ± 2.8	6.6 ± 2.2
$^{60}\mathrm{Co}$	5.8 ± 3.5	9.3 ± 3.0
$^{40}\mathrm{K}$	4.5 ± 2.0	5.6 ± 1.9
$ m ^{85}Kr$	19.0 ± 4.9	26.4 ± 2.3
$^{214}\mathrm{Pb}$	float	352.9 ± 7.5
$^{212}\mathrm{Pb}$	float	18.6 ± 2.5
$^{136}\mathrm{Xe}$	352 ± 16	358.5 ± 9.1
$^{124}\mathrm{Xe}$	1.37 ± 0.21	1.41 ± 0.13
125 Xe (Run0)	float	6.48 ± 0.83
$^{125}\mathrm{I}$	0.66 ± 0.16	0.59 ± 0.13
133 Xe (Run0)	float	86.1 ± 2.2
164 keV (Run0)	414 ± 17	407.7 ± 6.4
164 keV (Run1)	float	4.67 ± 0.32
208 keV (Run0)	37.8 ± 1.3	37.88 ± 0.77
236 keV (Run0)	565 ± 66	560.8 ± 8.8
236 keV (Run1)	float	3.05 ± 0.32
380 keV (Run0)	24.3 ± 1.2	24.10 ± 0.66
408 keV (Run0)	87.9 ± 3.2	88.8 ± 1.6
$pp+^{7}$ Be ν	2.22 ± 0.24	2.31 ± 0.23

2025/8/27