

Search for light dark matter with PandaX-4T

PandaX-4T experiment

A direct dark matter detection experiment located in China Jingping

Underground Laboratory (CJPL)

PandaX-4T experiment

Dual-phase Time Projection Chamber

PandaX-4T experiment

Physics runs

2020/11 - 2021/04	Commissioning (Run0) 95 days
2021/07 - 2021/10	Tritium removal xenon distillation, gas flushing, etc.
2021/11 - 2022/05	Physics run (Run1) 164 days
2022/09 - 2023/12	CJPL B2 hall construction xenon recuperation, detector upgrade
Current Status	Physics run (Run2)

Run0 and Run1 are both used in this analysis

Light Dark Matter search

PandaX has achieved progress in various light dark matter (LDM) interaction

To further improve sensitivity

Lower energy threshold

Low threshold channels

- Unpaired S2 channel (US2) ~0.33keVnr ~0.04keVee

Main challenges: Background and signal model

Paired channel

- Definition
 - S1 charge as low as 0.3 PE, requiring 2 or 3 hits
- Dominant background: Accidental events (AC)
 - Isolated S1 and S2 accidentally appear in a signal window

Paired channel

AC Model

Pick isolated S1 and S2, and randomly pair them together

Sideband to test model

- Off-window: the interval between isolated S1 and S2 is larger than maximum drift time window
- 1-hit: events with S1 only containing 1 hit

Boosted decision tree (BDT)

 Remove most AC backgrounds based on 23 variables related to waveform shape and position reconstruction

to the second se		Run0		Run1	
		W/O BDT	W/BDT	W/O BDT	W/BDT
Off-window	Prediction	180 ± 27	0.9 ± 0.2	417 ± 63	1.2 ± 0.4
Oll-willdow	Data	205	1	404	0
10% data	Prediction	26±6	0.12 ± 0.04	34±7	0.06 ± 0.02
1070 data	Data	18	0	29	0
1-hit side-band	Prediction	17095 ± 2564	14±4	27567 ± 4135	15 ± 5
	Data	17374	9	29359	17

Paired channel

Candidate events

- Total exposure: 1.20 tonne-year
- Some downward fluctuation

-	Ru	ın0	Run1		
paired ROI	2-hit	3-hit	2-hit	3-hit	
Surface	0.06 ± 0.01	0.06 ± 0.01	0.01 ± 0.01	0.02 ± 0.02	
$\mathbf{E}\mathbf{R}$	0.01 ± 0.00	0.00 ± 0.00	0.01 ± 0.01	0.01 ± 0.01	
Neutron	0.02 ± 0.01	$0.02 {\pm} 0.01$	0.03 ± 0.01	0.03 ± 0.01	
\mathbf{AC}	1.08 ± 0.28	$0.07{\pm}0.02$	1.15 ± 0.35	0.24 ± 0.08	
Total bkg.	1.16 ± 0.28	0.15 ± 0.02	1.21 ± 0.35	0.30 ± 0.08	
8 B CE ν NS	1.00 ± 0.24	$0.24{\pm}0.09$	1.76 ± 0.50	0.40 ± 0.18	
Observed	1	0	2	0	

US2 Channel

Definition:

No paired S1 or paired S1 with only 1 hit

Dominant backgrounds

- Delayed electrons (MD)
 - Dominant in low energy region, drop sharply
- Cathode

• Dominant in relatively high energy region, flat spectrum

US2 channel

Delayed electrons background:

- Small charge
- Related to single electron (SE) rate
- Position relation with previous large S2
- Spectrum get from deadtime region where SE rate is very high, use 2.5-4 nE as control region

US2 channel

Cathode background

- Wide charge spectrum
- Relatively large S2 width compared with physical events
- Spectrum obtained from paired S1-S2 cathode events, using 11-15 nE as control region

US2 channel

Candidate events:

- Total exposure: 1.04 tonne-year
- Some upward fluctuation in high-energy region of ROI
- MD uncertainty is greatly reduced compared with previous work

	Nominal		
Cathode	41.6 ± 10.6		
MD	$6.9^{+9.0}$		
Solar ν	10.8 ± 3.7		
ER	2.3 ± 0.6		
Neutron	0.1 ± 0.1		
Total	$61.7^{+14.4}_{-11.2}$		

PRL	130,	261001	(2023)
-----	------	--------	--------

US2 ROI	Run0	Run1
Cathode	100 ± 24	104 ± 21
MD	25 ± 3	20 ± 4
ERs	1.3 ± 0.1	0.9 ± 0.2
Total bkg.	126 ± 24	125 ± 21
⁸ B CEνNS	18 ± 4	25 ± 6
Observed	158	174

PRL133, 191001 (2024)

Signal model

Models

- Spin-independent (SI) dark matter-nucleon interaction
- Spin-dependent (SD) neutron-only interaction and proton-only interaction
- Dark matter-electron interaction through heavy and light mediator

Signal model

low energy response:

- LDM-nucleus
 - NEST model
 - Use Paired and US2 channels
 - Light yield and charge yield vary anti-correlatively in fitting

- LDM-electron
 - Conservative constant model
 - Only use US2 channel

Results

Dark matter-nucleon interaction

- Set the most stringent limits for SI interaction in [2.5, 5] GeV, SD neutron-only interaction in [1, 5.6] GeV, SD proton-only interaction in [1, 4.1] GeV
- Upward fluctuation due to excess in US2 channel high energy region
- Lowered energy threshold of US2 channel significantly improves SD interaction limits

arXiv: 2507.11930

Results

Dark matter-electron interaction

- Set the most stringent limit from 100MeV to 10GeV
- Upward fluctuation in heavy mediator scenario is also because of excess in US2 channel high energy region
- Due to different treatment in signal model and greatly reduced MD uncertainty, limit for light mediator scenario is significantly improved

arXiv: 2507.11930

Future plan

- PandaX-4T Run2 will be finished this year
- PandaX-20T is under R&D
 - The prototype is being upgraded recently
 - 20T is expected to be online in 2027

Summary

- Model and suppress backgrounds of low threshold channels
- ©Give the most stringent limits for dark matter-nucleon and dark matter-electron interaction models
- In the near future, PandaX-4T Run2 data and PandaX-20T will further improve the sensitivity for light dark matter

Cathode estimation

Cathode sample

Efficiency: $\frac{selection\ cut}{selection\ cut\ with\ loose\ width\ cut}$

Cathode drift time distribution

- Use paired cathode events as background sample
- Simulate events at the bottom of detector, these samples are consistent with paired cathode events
- To reduce spectrum statistical fluctuation, use the spectrum under a loose width cut, and then apply corresponding efficiency from waveform simulation to it

Cathode estimation

$$nominal = \frac{num_sample_in_roi}{num_sample_in_cr} \cdot num_data_in_cr$$

- Spectrum with different S1 range give systematic error
- Spectrum with total statistic give the nominal value and statistical error
- Difference of results given by efficiency from data and simulation give efficiency error

run0	Run1
100 <u>±</u> 24	104 <u>+</u> 21
12.4%	11.4%
18.1%	13.9%
10.6%	9.4%
	100 <u>+</u> 24 12.4% 18.1%

MD Estimation

MD sample

3 3.2 3.4 3.6 3.8

 10^{-2}

 10^{-3}

nElectron

Width distribution

- We find that MD rate is related with single electron(SE) rate, so we get MD samples from deadtime region where SE rate is very high
- The sample in deadtime is consistent with the MD events in livetime
- MD events in livetime are from high US2(2.5-3nE) rate runs

MD Estimation

$$nominal = \frac{num_sample_in_roi}{num_sample_in_cr} \cdot num_data_in_cr$$
 $rotation$

- Different small control regions divided by S2 charge and width give systematic error
- Spectrum with total statistic give the nominal value and statistical error

Estimation	Run0	Run1
Result	25 <u>±</u> 3	20 <u>±</u> 4
Statistical error	6.5%	6.4%
Systematic error	10.6%	16.9%

Efficiency

wimp vs Paired&US2

Signal model

A different treatment

• In previous work(PRL 130, 261001 (2023)) searching for light dark matter with Run0 US2 data, the mean total number of created photons and electrons was conservatively set to a floored integer.

This effect can cause around 3 times difference in expected signal number of LDM-electron interactions mediated by a light mediator(underestimated in previous work)