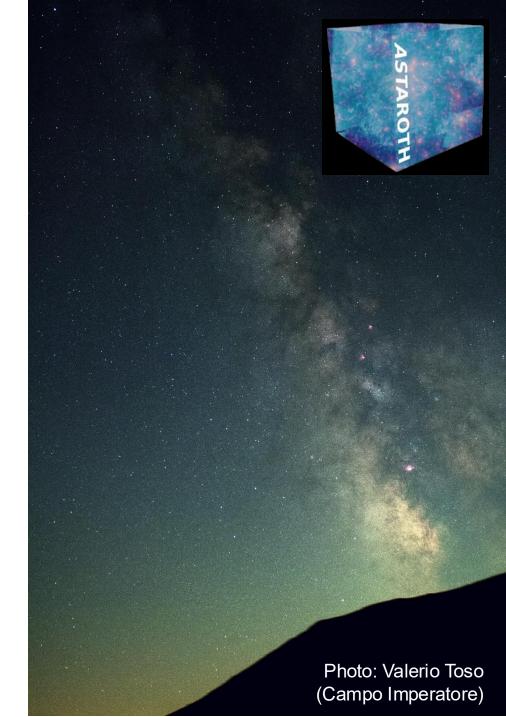
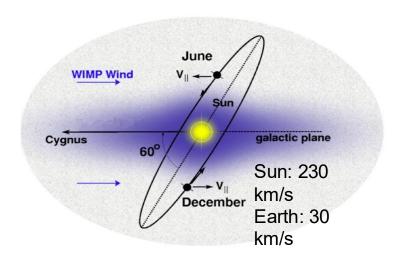
First cryogenic SiPM readout of a NaI(TI)-based dark matter detector with the ASTAROTH project

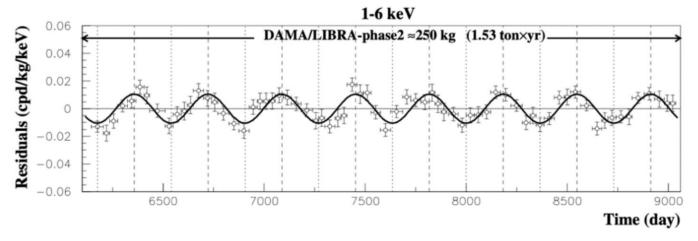

Davide D'Angelo

INFN


Università degli Studi di Milano and INFN

TAUP 2025 24-30 Aug 2025 Xichang (China)

Physics Case


• Challenges:

- → Energy ROI: up to 6 keV recoils
- → Low rates: ~ 1 events/day/kg
- → Radiopurity of crystals and all materials is key to sensitivity
- → Noise from photo-sensors is limiting S/N in the ROI and energy threshold

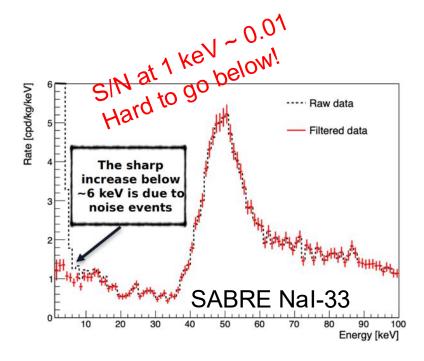
Direct search for dark matter with NaI(TI) crystals

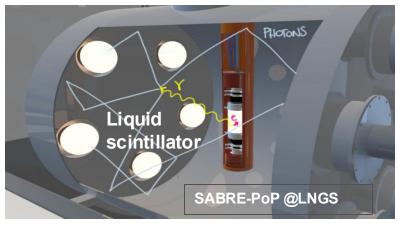
- Annual modulation expected: the Earth's motion around the Sun combines with the Sun's motion around the galactic centre.
- Annual modulation detected: DAMA/LIBRA (concluded in 2024), unverified!

Few % modulation fraction; large significance (11.9 σ)

[Nucl. Phys. At. Energy 2021, vol. 22, iss. 4, p 329-342]

Current technological scenario

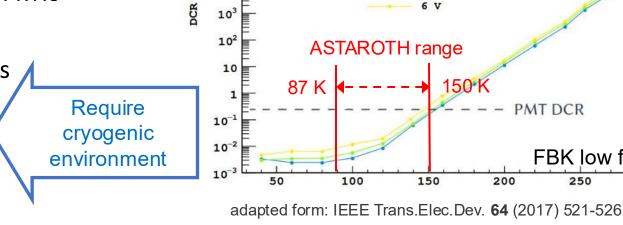

Existing NaI(TI)-based detectors: DAMA, SABRE, ANAIS and COSINE



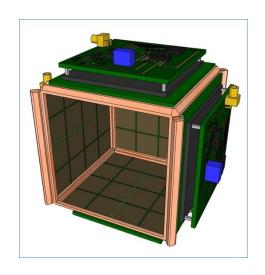
Elongated crystals, wrapped in reflector and coupled with PMTs.

- Mass of crystals ~ 5-12 kg: hard to achieve with very high purity.
- 2. Light collection limited to 7-15 ph.e./keV.
 - Out of 40-42 ph./keV
- 3. Reflector can be a source of surface contamination.
- 4. PMTs feature intrinsic <u>high</u> noise and radioactivity.
- 5. Background rejection strategy with **VETO** detector:
 - designed to tag γ 's from key backgrounds in the ROI: 40 K, 22 Na.
 - Organic liquid scintillators used so far by COSINE and SABRE-North Pop.
 - Safety and environmental issues: phased out at LNGS.

ASTAROTH surpasses all 5 limitations!



Overcoming limitations with SiPMs


Silicon PhotoMultipliers (SiPMs) advantages over PMTs:

- ✓ higher PDE (55%), w.r.t. ~30-35% max QE of PMTs at 420 nm (peak NaI(TI) emission)
- ✓ smaller transverse dimensions: compactness
- ✓ lower intrinsic radioactivity
- ✓ Lower noise than PMTs at T<150 K

105

ASTAROTH

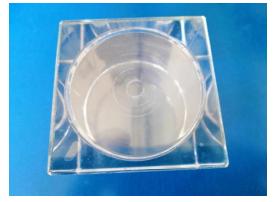
- > Small cubic crystals (5x5x5 cm³)
- read on all six surfaces by SiPM matrices (w/o reflector)
- > At tunable temperature: optimal for crystal response and SiPM noise
- > Liquid Argon provides cooling power and can double as VETO detector

→ Improve S/N to ~1 at 1 keV

PMT DCR

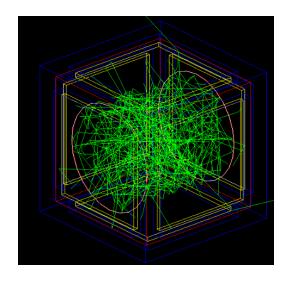
200

FBK low field


T [K]

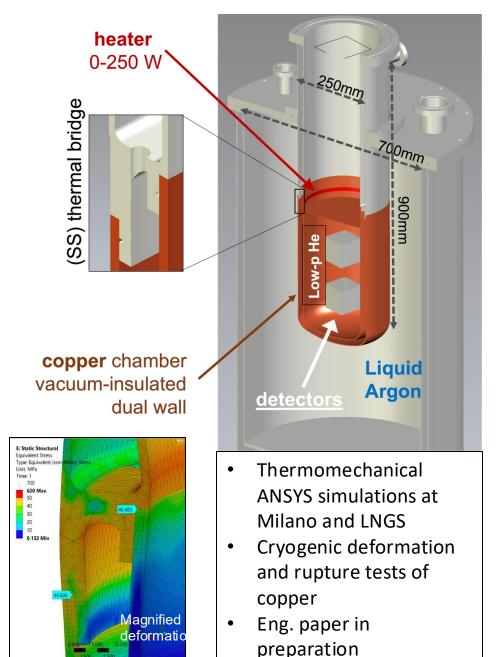
250

→ Access to sub-keV recoil energies


Crystal detector design

- Nal is hygroscopic
- ASTAROTH operates in a cryostat, need a case with several requirements:
 - withstand several thermal cycles to LAr T
 - fully transparent at LAr T
 - low radioactivity materials
- Present results with a fused silica case
 - 1-mm neon gas gap to accommodate for different CTE (NaI ≠ quartz)
 - 50x50 mm cylinder-in-a-cube temporary solution
 - Problem: only ~50% of light exits

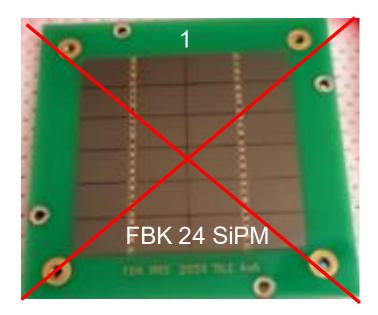
Hilger Crystals, UK

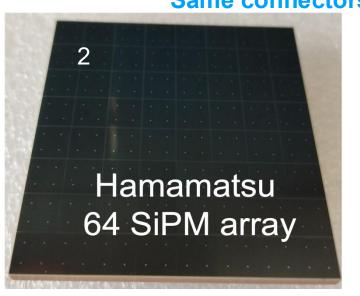

Recently steered into a new direction

(slide 14)

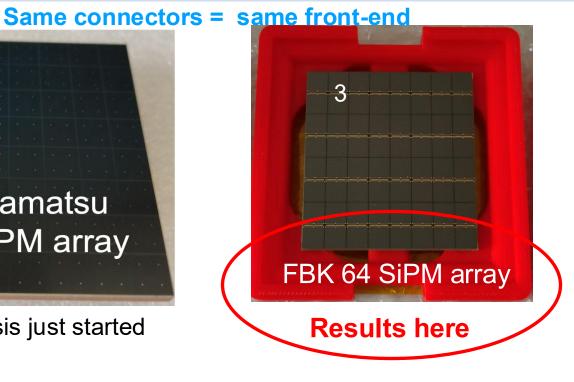
ASTAROTH cryostat

- **Dual-wall**, vacuum-insulated radio-pure copper chamber, immersed in a **cryogenic bath**.
- Cooling power through a specially designed stainless steel thermal bridge.
- Heater raises and stabilizes the temperature above that of cryogenic fluid. **Investigated range: 87-150 K.**
- **Helium gas** fills the inner volume, serving as heat-transfer medium to the crystals and SiPMs.
- Installed and commissioned in 2023 in LN₂

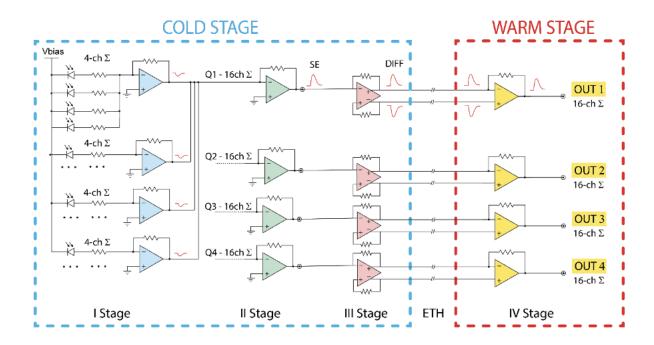


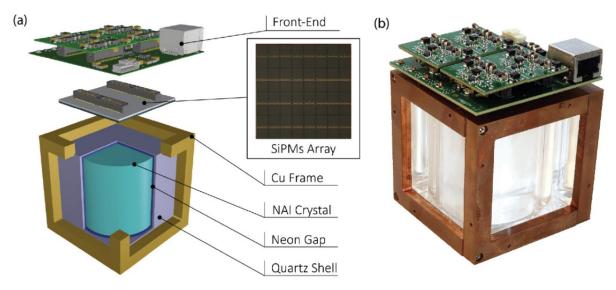

ASTAROTH - TAUP 2025 6

SiPM arrays


Vendor	Technology	Model	Tile size (mm²)	Devices	Area (mm²)	Also used	Pitch (mm)	Route	Ganging	Ch	Resin
1 FBK	NUV-HD-Cryo	custom	50x50	24	8x12	DS-20k	35	Wire bond	2s3p	4	ероху
2 HPK	S13361	6050AS-08	50x50	64	6x6	Dune	50	TSV	no	64	silicon
3 FBK	NUV-HD-Cryo	custom	50x50	64	6x6	Dune	30	Wire bond	no	64	ероху

mech. broken, to be replaced

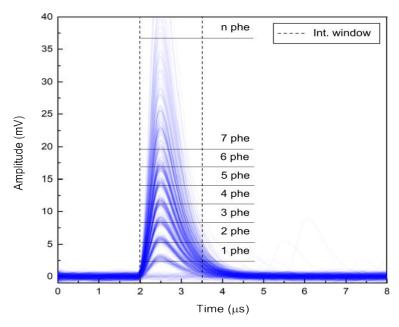

Analysis just started

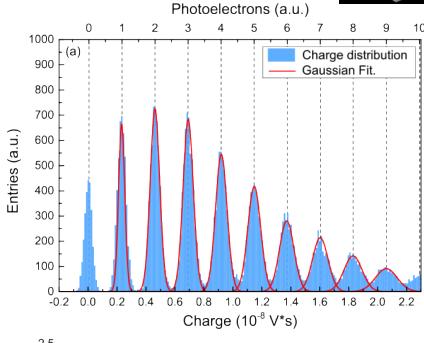


SiPM readout for FBK & HPK arrays

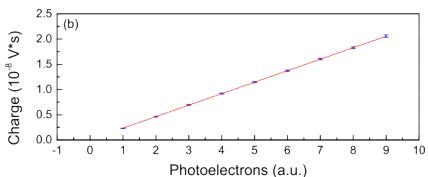
Developed a single custom cryogenic front-end to read out 64-SiPM arrays, both HPK & FBK


- Selection of components after cryogenic test for some SiGe Op-amp
- Cold section: Motherboard + 4 piggy boards: 3-stage amplifer
- Directly coupled to SiPM array
- 4 channels out: differential signals on CAT7 ethernet cable.
- Warm board to convert back to singleended
- DAQ with a commercial 14-bit, 500 MS/s waveform digitizer





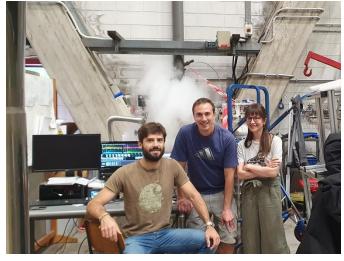
Laser calibration (@ 77 K)



- 405 nm ps-pulsed laser (Hamamatsu C10196)
- 200 μm multimodal fiber
- PTFE diffuser (not shown)
- In liquid nitrogen
- In Faraday cage

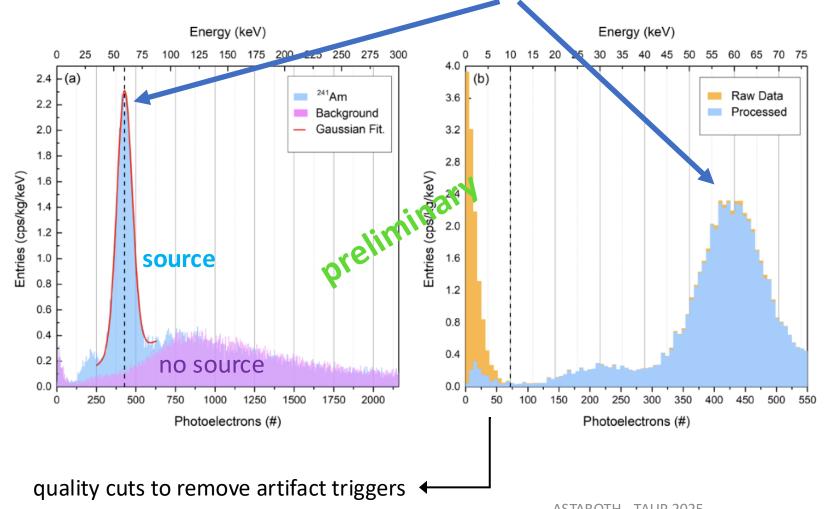
Excellent performance of FBK SiPM + custom electronics

ASTAROTH ²⁴¹Am cryogenic source runs

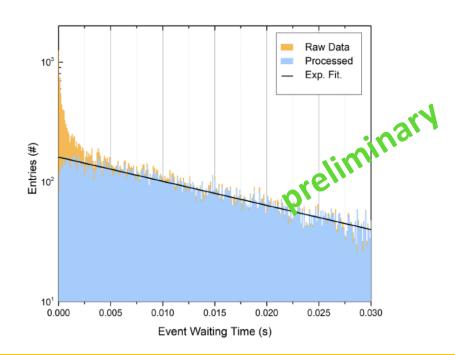


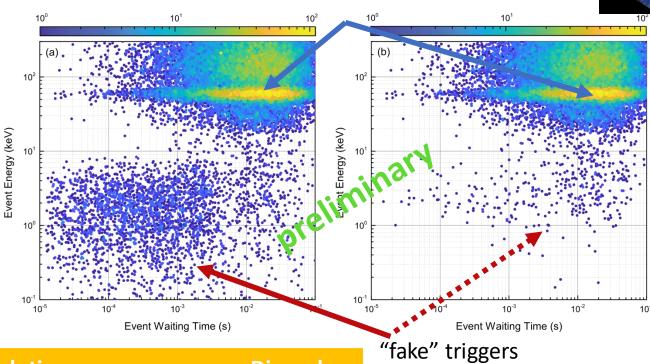


- 1. Mar 24: old FBK array + FE
- 2. Jun 24: new FBK array, tmp DAQ
- 3. Mar 25: new FBK array and DAQ
- 4. Jul 25: HPK array + epoxy-cased crystal
 - ²⁴¹Am cryogenic source
 - 1 or 2 sides instrumented
 - teflon on other 4 or 5 sides



arXiv:2507.21612, subm. to EPJ C


59.5 keV gamma from ²⁴¹Am Source



- 64 SiPMs FBK array
- Ph.e. yield:
 - ~ 7.2 ph.e./keV
- Remarkably better then expected!Considering:
 - only 1 array
 - case with gas gap
 - no optical coupling case/SiPM
- Several ways to improve!
- FWHM: 37 %
- Trigger thresh: 0.5 keV

Data quality selection

Problem	Origin	Solution	Discards
Fake triggers	Tail of preceeding event contributes to trigger	Discard events with wrong baseline computation	12.9 %
High frequency 20 MHz noise	External equipment at LASA	Low-pass filter	1%
Retriggering events	Muons?	500 ms veto after a saturating event	0.25 %

Efficiency: 93.5 %

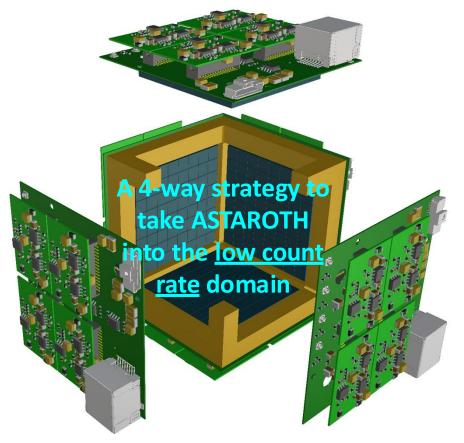
of evts < 10 keV removed

Acceptance: 98.5 %

12

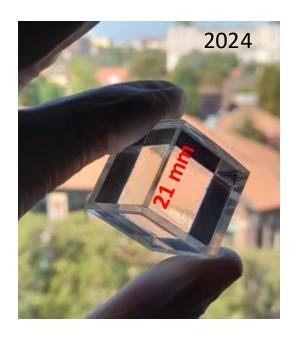
of evts > 10 keV retained

ASTAROTH phase-1 (2020-24) completed, demonstrating the viability of the technology


ASTAROTH_BEYOND

by INFN **2025-27**

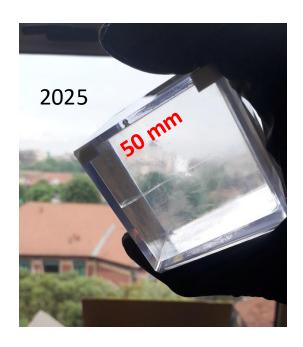
1. Maximize light collection


3. Veto detector

2. ASIC-based electronics

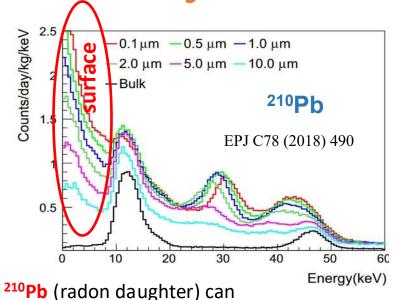
4. Run underground

ASTAROTH 13

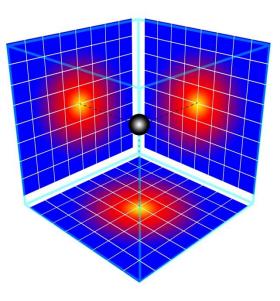


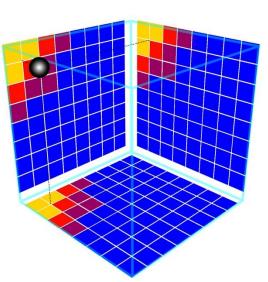
First epoxy-coated NaI(TI)

- A <u>revolution</u> in handling of hygroscopic crystals
- Method developed with 21 mm NaI(TI) crystals and two resins (Epo-tek, Stycast)
- First *fully transparent cold-compliant* epoxy-coated crystal in 2024
- Succefully scaled to 50 mm in 2025
- Operated with SiPMs in July 2025
 - Analysis in progress
- To be done:
 - Optical coupling
 - with silicon pads or Si-gel
 - Switch to high-purity crystal
 - from SABRE-North producer RMD (Boston)



Reject surface background by light map

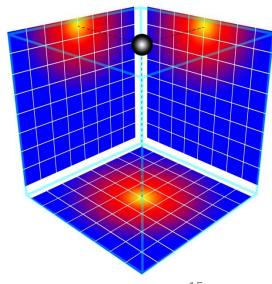


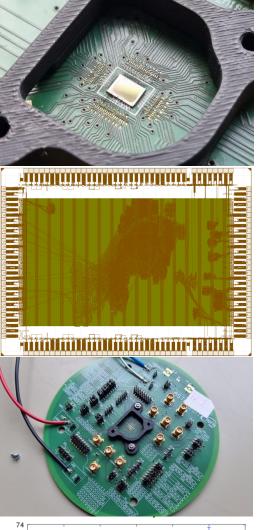

be implanted on the surfaces (observed by COSINE, SABRE)

and impact the ROI more

than bulk

2. ASIC-based electronics

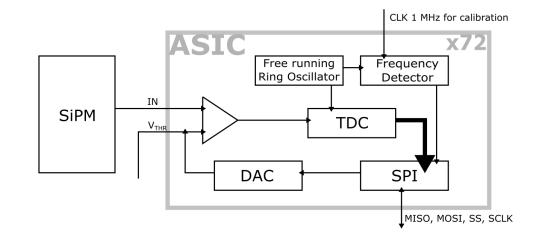

1. radiopure


2. compact

3. low power

A <u>machine learning algorithm</u> fed with the charge map from (at least) three sides could <u>discriminate surface from bulk events</u>.

A readout with this capabily working at crygenic temperature has an appeal that goes beyond ASTAROTH



74 72 70 88 70 88 66 64 64 62 50 100 150 200 250 300 350

ASIC front end

What we did

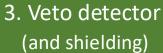
- Test chip in CMOS 110 nm with p-/n-mos, R, C and ring oscillators made of most common logic ports.
- Simulation model upgraded with temperature dependency.
- 4 tested in ASTAROTH cryostat Oct 2023 in 85-295 K.
- Technology works! for analog and digital circuits at cryogenic temperatures.
- Port delay decrease by ~10% at cold.
- Our temperature dependent model reproduces data.
- Of general interest for the IC community

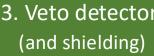
What we need to do

- Final chip design *started*, to be submitted in 2026
- Mixed analog/digital chip
- Pick up SiPM signal with a current conveyor
- DAC-programmed discrimination threshold
- Time-over-threshold charge estimate
- SPI interface
- <1 ns resolution <-> spe sensitivity

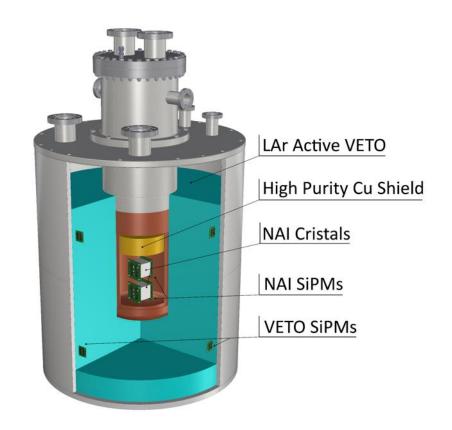
Andreani A., et al, MOCAST 2023

+ paper in preparation


Veto detector

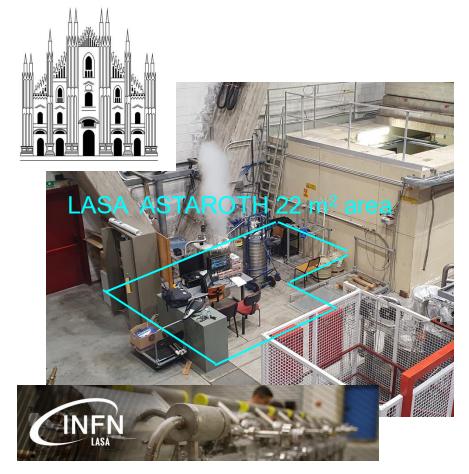

ASTAROTH accomplished:

cryostat operated multiple times


Temperature stable < 0.1K!!!

- Switch from LN₂ to LAr
- Instrument outer volume with SiPM
 - Independent Geant4 and Fluka simulations in progress to understand coverage and disposition
- Surround with a lead castle (~10 cm thick)
 - Acquired ~ 600 lead bricks

ASTAROTH 17


Final underground run (2027)

ASTAROTH

Muon disruptive interactions in the crystal can last a few minutes (!)

Final year: plan to go to an underground lab.

At LNGS (10⁶ less muons) there is interest of the SABRE-North collaboration and lab director.

4. Go underground (last year)

First use of large area SiPM matrices coupled with NaI(Tl) scintillating crystal for low energy dark matter search

The team

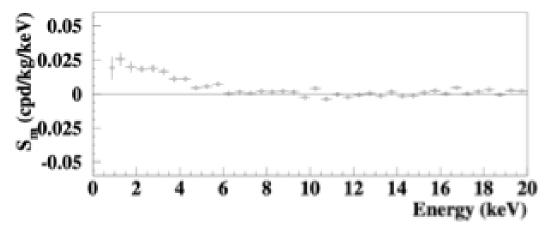
Edoardo Martinenghi^{a,1}, Valerio Toso^{1,2}, Fabrizio Bruno Armani^{1,2}, Andrea Castoldi^{1,3}, Giuseppe Di Carlo⁴, Luca Frontini¹, Niccolò Gallice^{1,2,5}, Chiara Guazzoni^{1,3}, Valentino Liberali^{1,2}, Alberto Stabile^{1,2}, Valeria Trabattoni^{1,2}, Andrea Zani¹, Davide D'Angelo^{b,1,2}

Thank you for your attention!

The ANAIS+ project is developing a similar technology, see talk of M. Martinez in this session

¹INFN - Sezione di Milano, via Celoria 16, 20133 Milano, Italy

²Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italy

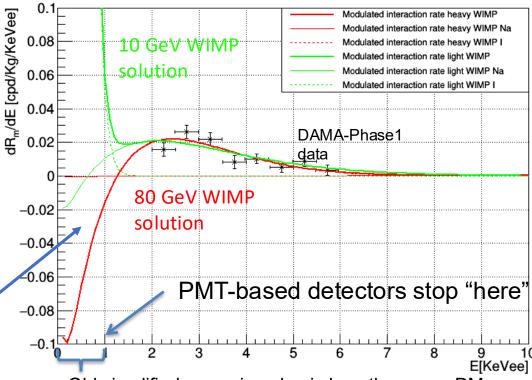

³Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy

⁴INFN - Laboratori Nazionali del Gran Sasso (LNGS), via G. Acitelli 22, 67100 Assergi, Italy

⁵Brookhaven National Laboratory, PO 5000, Upton, NY 11973, USA

Back Up

Why low energy?


[Nucl. Phys. At. Energy 2021, vol. 22, iss. 4, p 329-342]

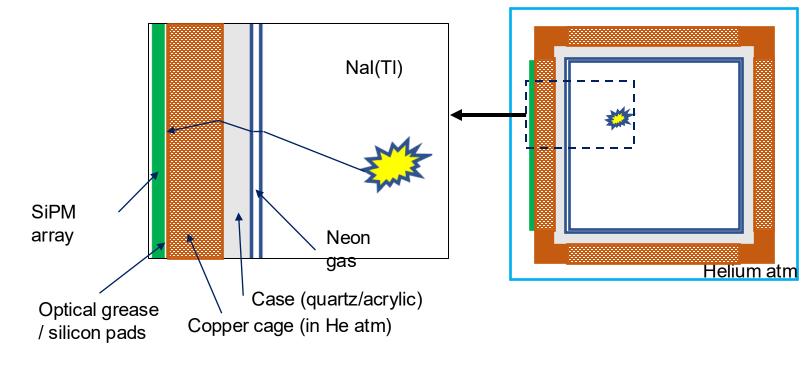
- Pushing the detection energy threshold below the 1 keV limit is of fundamental importance to test the positive observation of the DAMA experiment, with the same target material.
- This could allow disentangling different DMinduced modulation models, thus restricting the parameter space of a surviving DM candidate.

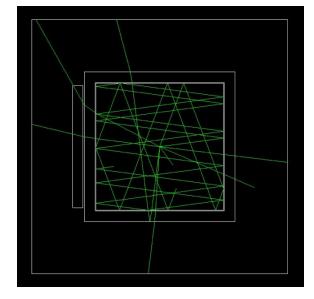
DAMA/LIBRA phase-2

- The signal seems to be larger at lower energies.
- DAMA (2022) & COSINE (2024) report for the first time a 0.75 keV threshold.

Modulated Rate

Old simplified excercise - basic hypotheses on DM interaction (standard Halo distribution, spin-independent coupling).


Setup simulation


ASTAROTH can operate 2 encapsulated 5x5x5 cm³ NaI(TI) crystals (0.46 kg each).

- Goal: collect ~ 20 ph.e./keV out of ~42 γ/keV emitted by the crystal -> ~50% collection efficiency
- Very challenging

- evaluation of collection efficiency
- modify details to optimize design:
 - Cubic vs cylindrical crystal
 - Distance SiPM case
 - Distance case crystal
 - Surface polished/rough

Conclusions:

- Cylinder slightly better than cube
- 2. Surface not relevant
- 3. Neon layer induces several total reflections -> 50% light absorbed on the crystal
- 4. Importanto to keep SiPM close to case

ASTAROTH - TAUP 2025 22

Toward epoxy-coated crystals

Three products identified and procured:

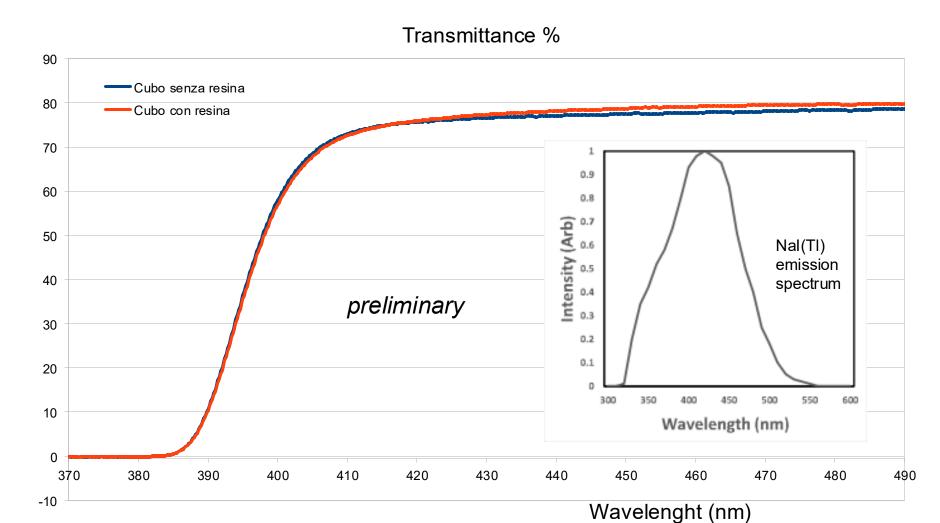
Nal

CTE: 47.5

Ref ind.: 1.84

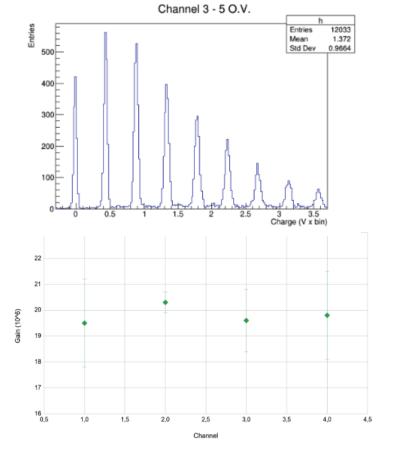
				Quant		СТЕ	R	Transparenc V	/iscosity @			Shelf life	
Fi	rm	Name	Price	ity (I)	T range	(µm/m)	index	y @ 420nm	23C (cps)	Work t	Cure t	(yr)	Note
											8-10h		
M	asterbon	dEP29LPSP	1200\$	0.473	4-400 K				500-1500	4-5h	@50C	0.5	NASA rated
											16h		
Εį	oo-tek	NDA	170 €	0.227		61	1.53	99%	225-425	8h	@45C	1	used by FBK
											1-2h		
St	tycast	1266	240 €	1-	65+105 C				650	30m	@65C	1	used by Dune

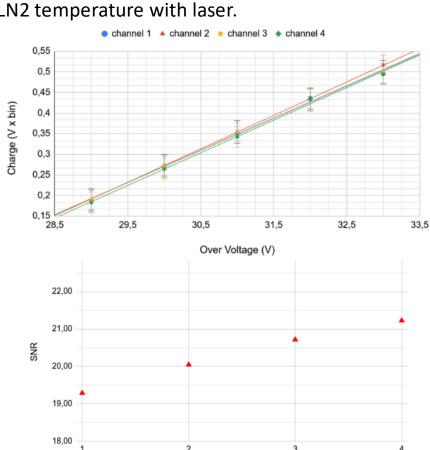
- Goal thickness: ~1.5 mm on each side
- Casts:
 - Optical glass cuvette: they break when cooled -> one shot -> expensive (~250 € / trial)
 - Silicon:
 - Either commercial ones in standard sizes
 - Self made with raw silicon
- Procedure developed first with PMMA cubes:
 - Bottom layer -> vacuum degassing -> oven curing -> cube insertion -> resin fills cast -> vacuum degassing -> oven curing



Tested by spectrophotometer.

20 mm PMMA cube with and w/o a 1.5 mm *Stycast* epoxy coating on all sides

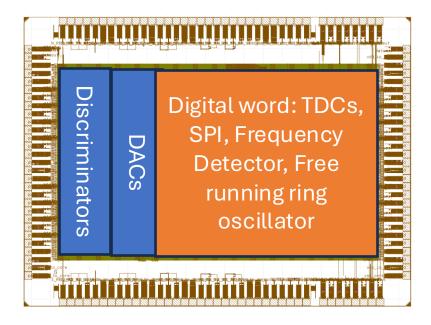


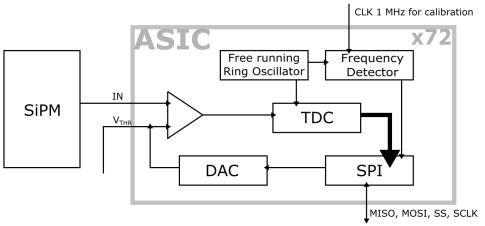


SiPM readout for FBK-1 array

Frontend board for FBK-1 24-SiPM array (Internal design):

- 4 channels + SUM.
- Designed internally (N. Gallice), based on design of DS-20k.
- Solved issue on mounting of components and leakage current
- Characterized (M. Galli) at room and LN2 temperature with laser.





Channel

Chip ASTAROTH_BEYOND

Up to 72 channels

Discriminator:

- 1.Programmable threshold tunable externally or internally (DAC)
- 2. Receives scintillation charge signals from a Silicon Photomultiplier (SiPM)

Clock Generation:

- 1.High-frequency clock for the TDC generated by a Digital Ring Oscillator (DRO)
- 2.DRO calibration managed by an internal frequency detector

Mixed-Signal Design:

- 1.Combines digital (SPI, DRO, counters) and analog/mixed components (discriminators, DAC)
- 2. Digital parts are implemented using standard cells and EDA software
- 3. Automatic placement and routing (Place & Route)

Silicon-proof:

1.SPI interface, Digital Ring Oscillator (DRO), and simple counters are siliconproven from the previous Astaroth chip

Control and Data Management:

- 1.SPI interface
- 2.Due to low event frequency (<< 1 kHz), output data will be stored in SPI registers to obtain a charge map

Raw resolution

1.To discriminate for 1 to 2 photons a minimum resolution of ns is needed

TAROTH - TAUP 2025 26

Understanding crystal response

- Light yield and pulse shape of NaI(TI) vary significantly with temperature.
 Physics is not well understood and the literature is confused.
- ASTAROTH performed three different campaigns at LNGS in a COSINUS cryostat.
- Several problems with crystals and setup, results inconclusive.
 Solution:

- crystals with 3 doping levels procured
- 250, 750, 1500 ppm.
- New cryocooler with two optical windows

Just commissioned!

Where do we stand?

ASTAROTH phase-1 completed: 2020-24

Demonstrated the viability of the technology

- Preliminary outcomes:
- A. Ph.e. yield ~ 7.2 ph.e./keV (1 array)
 already better then expected!
 -> with several ways to improve ____
- B. Blank run (no crystal): instrumental noise < 1 Hz
- C. Residual low energy events must be addressed:
 - 1. External background
 - 2. Electronics radioactivity
 - 3. Crystal bulk and surface radioactivity
 - 4. Muon disruptive interactions

This shows that the goal of ASTAROTH of demonstrating a S/N ~ 1 at 1keV and a sub-keV threshold <u>is at hand</u>

Very busy to-do list

- + maximize light collection
- + shielding + LAr veto
- + low radioactivity
 - crystal + electronics

28

- + ASIC to reject surface backgr.
- + underground site (final year)