First Dark Matter Search using Magnetic Levitation and more...

Prof Christopher Tunnell

TAUP 2025

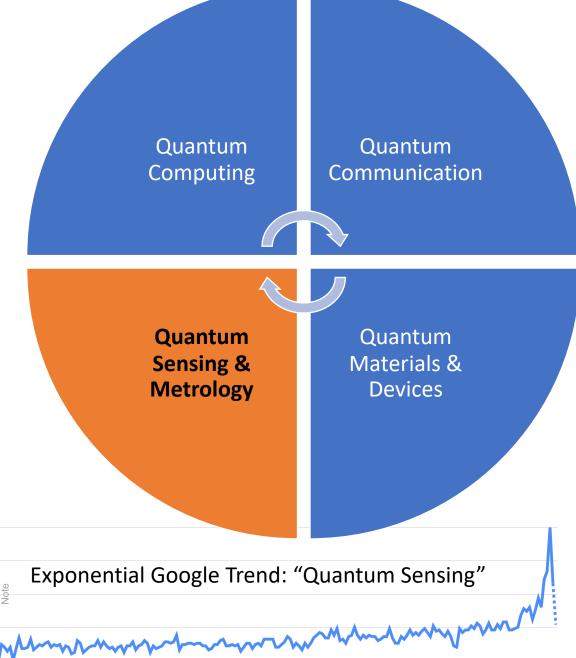

Xichang/西昌市/幻岛》

Windchime

Or Juehang Qin

POLONAISE

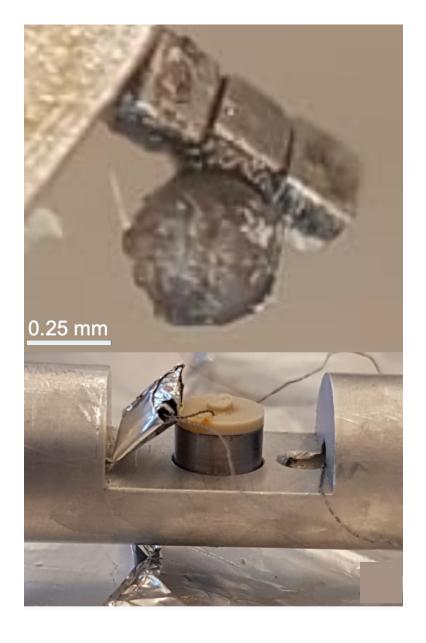
RICE UNIVERSITY


Can table-top experiments lead searches?

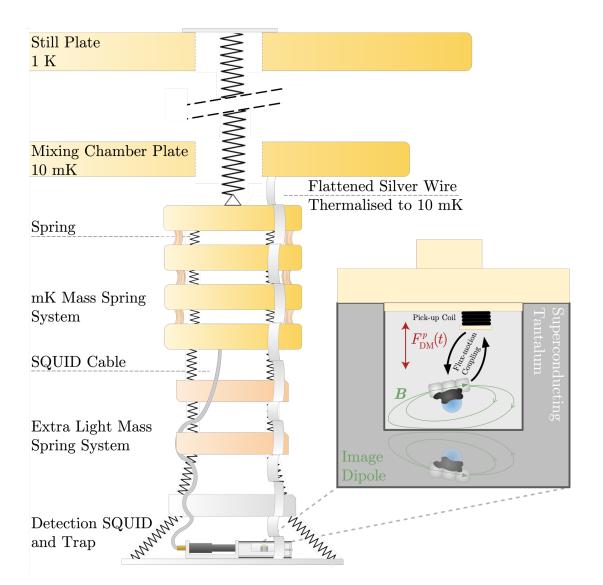
- Due to climate crisis, my personal goal is less carbon intensive experimentation.
- Bonding with other concerned scientists from other fields made me realize their table-top experiments could teach us about particle physics.
- New promising technological path forward for particle physics.

Many new technologies.

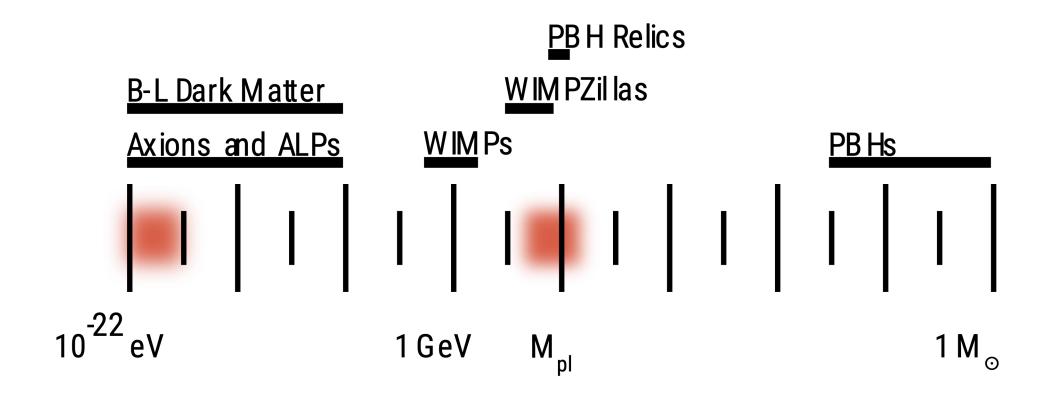
- Quantum technologies outpace technology development in HEP.
- E.g. quantum sensors even 'beat' the uncertainty principle (i.e. SQL)
- What can we learn about particle physics and cosmology?


 Today's talk is on European magnetic levitation ('maglev') technologies.

nug 23, 20... Feb 27, 2022 Sep 3, 2023 Mar 9, 2025



- Test mass: three Nd2Fe14B magnetic cubes with glass ball ($m_p \lesssim mg$)
- Levitated over cooled superconducting tantalum (T ≤ 1 K)
- A force F^p can push the levitated particle around
- Force sensitivity: $S_{FF} \sim 10^{-16} \text{ N Hz}^{-1/2}$


Our papers

Collaboration	Title	Reference	arXiv
Windchime	The Windchime Project	Snowmass 2021	2203.07242
(Theory)	Vector wave dark matter and terrestrial quantum sensors	JCAP 06 (2024) 050	2403.02381
POLONAISE	<u>First Search</u> for Ultralight Dark Matter Using a Magnetically Levitated Particle	Phys. Rev. Lett. 134, 251001 (2025)	2409.03814
Windchime	Mechanical Sensors for Ultraheavy Dark Matter Searches via Long-range Forces	Accepted PRD	2503.11645
MORRIS	The MORRIS Experiment: Magnetic Levitation as a New Probe of Non-Newtonian Gravity	(Under review)	2506.17385

Other papers

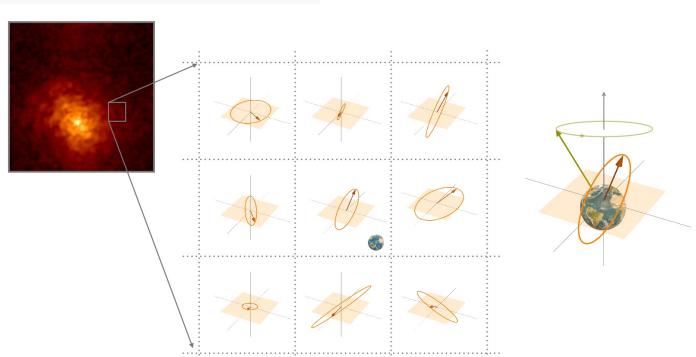
Title	Reference	arXiv
Dark-photon and axion dark matter sensing with levitated superconductors	Phys. Rev. D 109, 055024 (2024)	2310.18398
Ultralight dark matter detection with levitated ferromagnets	Phys. Rev. D 110, 115029 (2024)	2408.15330
Superconducting Levitated Detector of Gravitational Waves	Phys. Rev. Lett. 134, 181402 (2025)	2408.01583

Many places dark matter can be.

Ultralight dark photons

Vector Wave Dark Matter and Terrestrial Quantum Sensors

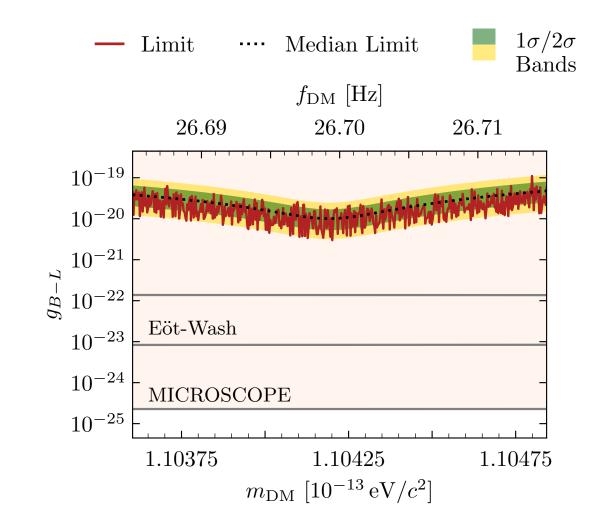
 For ultralight, occupation number macroscopic


$$N = n_{
m DM} \lambda_{
m dB}^3 \sim 10^{58} \left(\frac{10^{-13} \, {
m eV}}{m_{
m DM}} \right)^4$$

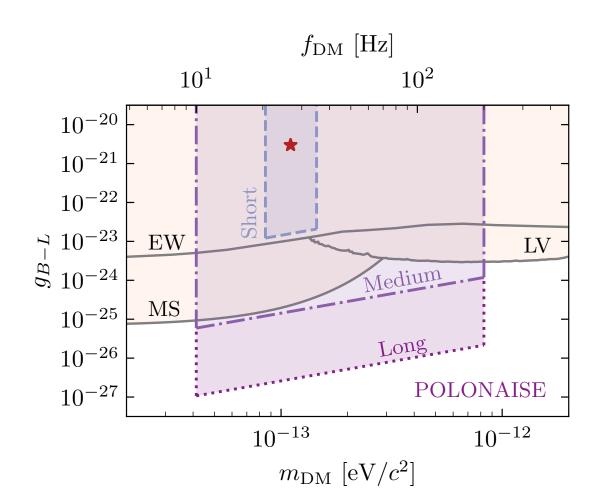
Dorian W. P. Amaral^{a*}, Mudit Jain^{a,b*} Mustafa A. Amin^a, and Christopher Tunnell^a

- Bosonic polarized wave
- Joint theory project for signal model:
 - Model polarized field
 - Formalism for direct detection (including polarization)
- The scale of force on test mass is:

$$\mathcal{F} \equiv g_{B-L} \left(\mathcal{R}_p - \frac{\omega_0^2}{\omega_{\rm DM}^2} \mathcal{R}_t \right) m_p a_0$$

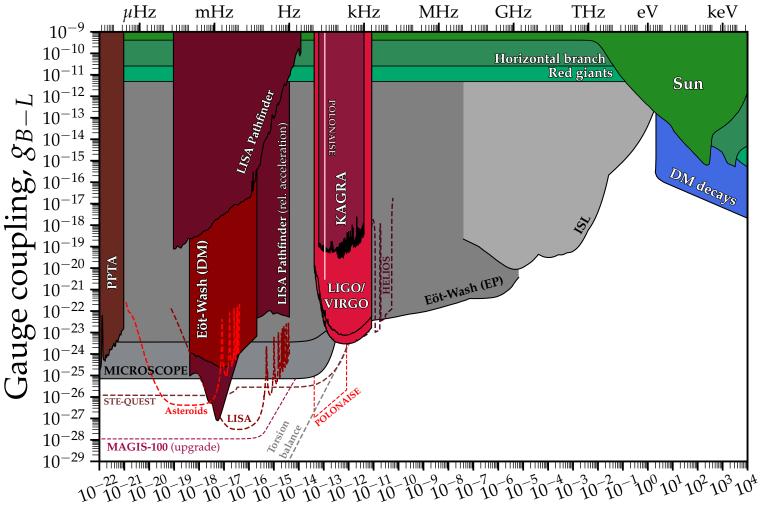

with \mathcal{R}_p and \mathcal{R}_t the averaged neutron-to-atomic-weight ratios of the particle and trap, respectively, ω_0 the resonance angular frequency of the particle, m_p the total mass of the particle, and $a_0 \approx 2.12 \times 10^{11} \,\mathrm{m \, s^{-2}}$ a characteristic acceleration imparted by the ULDM field [68].

First Search for Ultralight Dark Matter Using a Magnetically Levitated Particle


Dorian W. P. Amaral , ** Dennis G. Uitenbroek , Tjerk H. Oosterkamp , and Christopher D. Tunnell **Department of Physics and Astronomy, Rice University, MS-315, Houston, TX, 77005, U.S.A. Leiden Institute of Physics, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands.

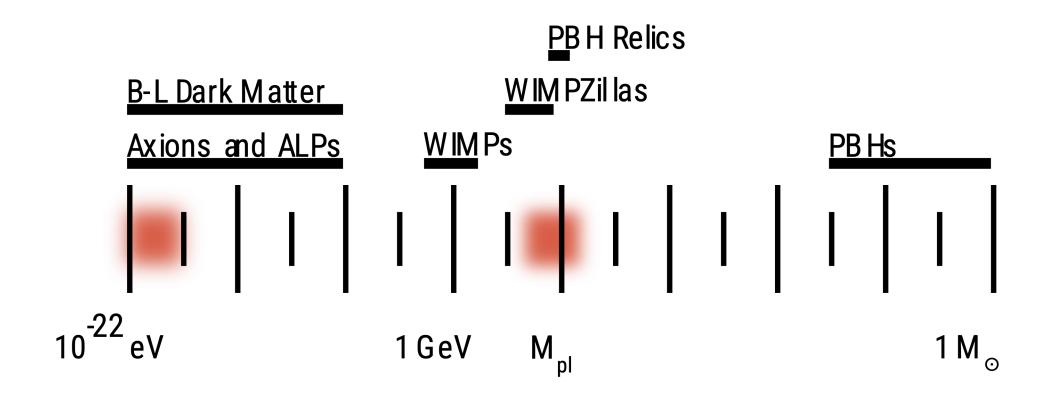
- Developed <u>first</u> statistical and analysis pipeline, connecting theorists and experimentalists (details in paper)
- Why an exciting PRL:
 - First time using data
 - Not so far from torsion balances given:
 - Experiment not tuned for this measurement (giant spinning wheel!)
 - Only 4 hours of data
- We now have machinery to improve things

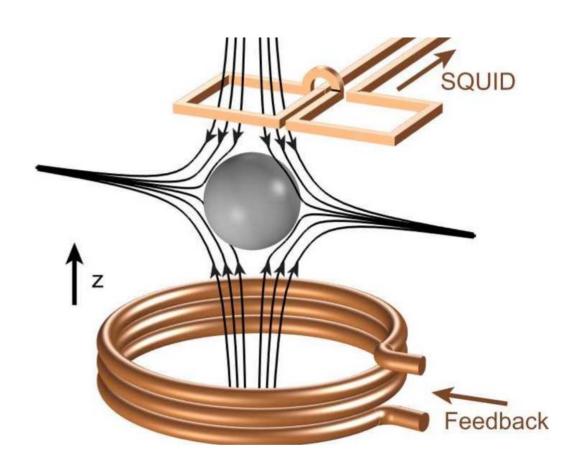
POLONAISE experiment Probing Oscillations using Levitated Objects for Novel Accelerometry In Search of Exotic-physics

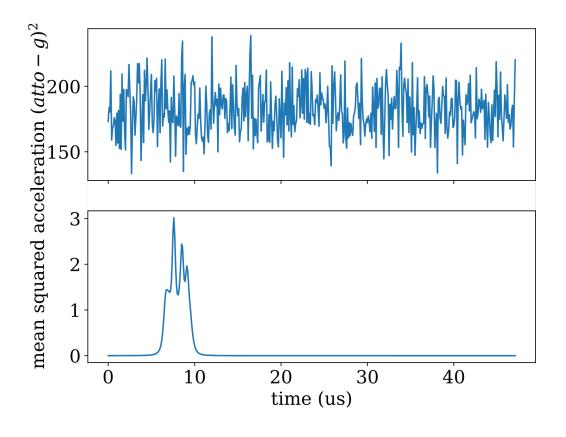


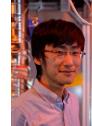
	Short	Medium	Long
T [mK]	20	20	2
$m_p [mg]$	0.43	430	430
$n_{ m SQ}\left[\hbar ight]$	10^{3}	10^{2}	10^1
$\sqrt{S_{FF}} [\mathrm{N}/\sqrt{\mathrm{Hz}}]$	$10^{-19} f_0^{1/2}$	$10^{-18} f_0^{1/2}$	$10^{-19} f_0^{1/2}$
$\Delta f_{\mathrm{opt}} \; [\mathrm{mHz}]$	3.4	3.4	0.34
Q	10^{8}	10^{9}	10^{10}
$ \mathcal{R}_p - \mathcal{R}_t $	0.039	0.039	0.213
N_p	1	10	100

- Two years of data taking
- Synergy Einstein Telescope R&D

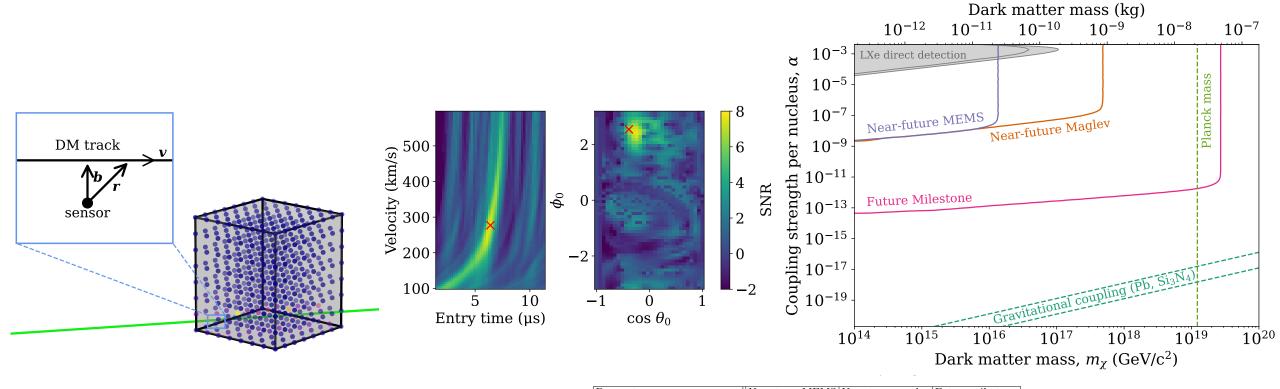

We made it to the summary plot


Vector boson mass [eV]

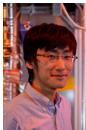

Many places dark matter can be.

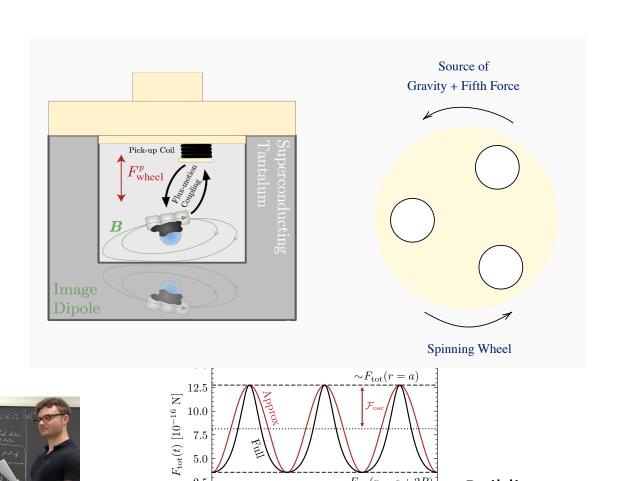


Planck-scale dark matter



Mechanical Sensors for Ultraheavy Dark Matter Searches via Long-range Forces


Juehang Qin \mathbb{O} , ^{1,2,*} Dorian W. P. Amaral \mathbb{O} , ¹ Sunil A. Bhave \mathbb{O} , ^{3,2} Erqian Cai \mathbb{O} , ¹ Daniel Carney \mathbb{O} , ⁴ Rafael F. Lang \mathbb{O} , ^{5,2} Shengchao Li \mathbb{O} , ^{5,†} Alberto M. Marino \mathbb{O} , ^{6,2} Claire Marvinney \mathbb{O} , ^{6,2,‡} Jared R. Newton \mathbb{O} , ^{5,2} Jacob M. Taylor \mathbb{O} , ^{7,8} and Christopher Tunnell \mathbb{O} , ^{9,1}



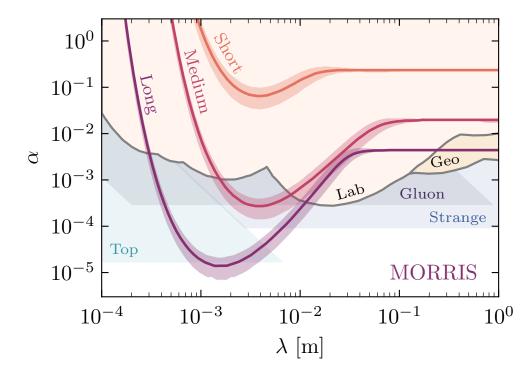
Parameter	Near-term MEMS	Near-term maglev	Future milestone	
Mechanical quality factor $Q_{\rm m}$	10^{7}	10 ⁷	10^{10}	
Resonance frequency $\omega_{\rm m}$	$20\mathrm{kHz}$	1 Hz	$20\mathrm{mHz}$	
Sensor mass $m_{\rm s}$	$20\mathrm{mg}$	100 mg	100 g	
Sensor density	$3.2 \times 10^{3} \mathrm{kg/m^{3}}$	$1.13 \times 10^4 \text{kg/m}^3$	$1.13 \times 10^4 \mathrm{kg/m^3}$	
Temperature T	$15\mathrm{mK}$	15 mK	15 mK	
Quantum noise reduction ξ	$10\mathrm{dB}$	$0\mathrm{dB}$	$15\mathrm{dB}$	
Sensor count	$10 \times 10 \times 2$	$2 \times 2 \times 1$	$20 \times 20 \times 20$	
Sensor array size	$0.1\mathrm{m}$	0.6 m	2 m	dc
Exposure	1 vear	1 vear	5 years	uc

The MORRIS Experiment: Magnetic Levitation as a New Probe of Non-Newtonian Gravity

Dorian W. P. Amaral, ** Tim M. Fuchs, ** Hendrik Ulbricht, and Christopher D. Tunnell, ** Tunnell, ** Tim M. Fuchs, ** Tim M.

0.5

1.0


1.5

 $\sim F_{\rm tot}(r=a+2R)$

2.0

2.5

Length Scale
$$U(r; \alpha, \lambda) \equiv -\frac{G_{\infty} m_{\rm S} m_p}{r} (1 + \alpha e^{-r/\lambda})$$
 Coupling

Building setup now, data later this Fall.

What to remember

- Magnetic levitation offers force sensing at the quantum frontier
- New detector technology informs particle physics:
 - <u>Ultralight</u>: made analysis pipeline for the first analysis with data
 - Projected leading sensitives [10⁻¹², 10⁻¹³] eV
 - Heavy: appears competitive near Planck scale compared to our previous LXe results
 - Gravity: we working with gravity experiments to interpret their soon leading data in particle physics frameworks

Want more beyond papers?

- Workshop: Planning workshop, email me <u>tunnell@rice.edu</u> or talk to me after if interested.
- <u>Seminars:</u> Temporarily based in Netherlands.
- Impatient?: Please talk today with me over food and/or drinks.