

arXiv: 2412.10451

Low-energy Yttrium-Beryllium calibration in XENONnT

Shengchao Li
Westlake University
On behalf of the XENON Collaboration

Aug. 28, 2025 TAUP2025, Xichang

XENON collaboration

ENON Westlake | DM and neutrino lab

Nik hef

◆ Amsterdam

INFN

• Assergi

Stockholm University

INFN

♥ Bologna

QL'Aquila

• Freiburg

Dubatech LPNHE

● Paris

SKIT

♥ Karlsruhe

COIMBRA

Q Zurich

XENON Time Projection Chamber (TPC)

Redundant readout:

S1: light signal (prompt)

S2: charge signal (delayed)

3D position info:

-XY from PMT hit pattern

-Z from drift time

Energy reconstruction:

 $E = 13.7eV \times (N_{ph} + N_e)$

Particle discrimination:

ratio of charge/light (ERs vs. NRs)

S2_{top}

S2_{bottom}

S1_{bottom}

XENON Time Projection Chamber (TPC)

ENON Westlake | DMand neutrino lab

Particle discrimination:

ratio of charge/light (ERs vs. NRs)

XENON Time Projection Chamber (TPC)

Ekaterina

Inputs: energy, electric field, "Lindhard factor"

Particle discrimination:

ratio of charge/light (ERs vs. NRs)

Nestlake | DMand neutrino lab

XENON WIMP calibration

In the WIMP search (see Maxime's talk 8/25), radioactive sources are introduced to model the **light/charge** response and **threshold** effect

²²⁰Rn: flat spectrum from beta

 37 Ar: electron-capture line(s) $^{2.82 \text{ keV}}_{0.27 \text{ keV}}$ (K-shell)

± 2 Sigma best-fit ER/NR band

AmBe: MeV neutron coincident with γ-ray in nVeto

XENON WIMP calibration

In the WIMP search (see Maxime's talk 8/25), radioactive sources are introduced to model the **light/charge** response and **threshold** effect

Low-energy NR calibration

For the search for ⁸B neutrino (see Kexin's talk 8/26), and ~6GeV WIMP (see Shenyang's talk 8/27), the momentum transfer is O(1/10) of ~100 GeV WIMP nuclear recoils

Low-energy NR calibration

For the search for **B neutrino** (see Kexin's talk 8/26), and **~6GeV** WIMP (see Shenyang's talk 8/27), the momentum transfer is O(1/10) of ~100 GeV WIMP nuclear recoils

Need:

- Demonstrate sub-keV NR detection with reduced (3→2) coincidence requirement
- Extract light and charge yields of 0.5-5keV in LXe at field condition of 23V/cm

1.84 MeV ⁸⁸**Y** γ-ray triggers ⁹**Be** photo-disintegration:

$$\gamma + {}^9Be \longrightarrow n + {}^8Be \quad \text{(Q=-1.667 MeV)}$$

- \rightarrow quasi-monoenergetic 152 keV neutrons, **but** only 0.65 mb cross-section (γ:n ~ 10⁵:1)
- → need: more Be, gamma shielding

$$\mathcal{S} = \frac{p_{\gamma,n} N_{\mathrm{NRSS}}/S_n}{p_{\gamma,n} N_{\mathrm{ER}}/S_n + N_{\gamma}/S_{\gamma}} \underbrace{-\text{TPC NR}}_{\text{(direct+induced)}}$$

optimized with MC simulations: t = 50 mm, d = 25.4 mm

→ final **ER:NR** ~ **1600:1** with 9.45 cm of tungsten

YBe source deployment

I-belt

CR: Daniel W., Yossi M

88Y+Be and 88Y+PVC calibrations

NON Westlake | DM and neutrino lab

 To model background components related to ⁸⁸Y gamma

100

1000

cS1 [PE]

10000

100000

Steady source decay monitored with gamma

10

10

Westlake | DM and neutrino lab

Partial cylindrical shell with a 33 (62.2) cm inner (outer) radius:

- Optimized with neutron simulation (retain ~90% signal)
- Neutron mean-free-path ~10 cm → not too deep in R
- Reduce wall events with reduced S2 → not too shallow in R
- Reduce electrode/surface events → centered in depth

XENON

Westlake | DM and neutrino lab

- Much higher event rate in the lowenergy NR ROI of YBe data implies successful NR calibration
- In YBe dataset, additional accidental coincidence (AC) events concentrate in dashed box, overlapping with the expected YBe NR signal region from simulation
- origin: isolated S1 and S2 due to high energy gammas
- The gamma-only Y-PVC dataset is expected to contain only ACs
- Need: AC suppression, AC model

AC suppression with machine learning

- Prepare **two** datasets:
- 1. ⁸⁸YBe neutron simulation
- Data-driven AC model from 88YBe and 88YPVC runs, to predict rate and shape of AC events*

*using Axidence, validated with science and calibration data

Train a Boosted Decision Tree (BDT)
 classifier to discriminate AC events from
 NR events, using physics-inspired
 parameters, such as:

Diffusion: correlation between the <u>S2 pulse</u> width and electron <u>drift time</u> **NR multi-scatter (MS):** space and time correlation between the largest two S2s, at the

cost of single-scatter NRs (~20% of total NRs)

Separation in **BDT score** dimension:

- rejects 91% of AC events
- retaining 89% of ⁸⁸YBe MS NRs
 ⁸⁸Y-PVC data score suggest AC feature
 extracted in BDT and accurate AC model

ENON Westlake | DMand neutrino lab

Yield + reconstruction effects included to fit YBe data:

- S1 reconstruction efficiency by bootstrapping PMT hits to mimic MS neutrons
- Event building efficiency evaluated by salting*
- Event selection efficiency due to delayed electron (high R dependence)

ENON Westlake | DM and neutrino lab

- MCMC best-fit p-value = 0.93
- NEST v2 parameterization, ~30% uncertainty band sampled from fitted posterior
- Minimum threshold for light (charge) yield at 0.56 (0.62) keV_{NR}

Summary

- First successful sub-keV nuclear recoil calibration with an 88YBe photoneutron source in XENONnT
- Accumulated 183 hours of **neutron calibration**, and 152 hours of gamma-only exposure
- Data-driven **AC model** used to train **BDT classifier**. verified on gamma-only dataset
- **Light** and **charge yields** of liquid xenon (23 V/cm) from ~0.5 to 5.0 keV_{NR} constrained with MCMC fit
- Yield model fed into recent **low-energy NR** searches in XENONnT

(Kexin's talk 8/26) PRL 133 (2024), 191002

(Shenyang's talk 8/27) PRL 134 (2025), 111802

backups

*before suppression cuts

- "Isolated" S1 ~300 Hz* (reduced coincidence)
- "Isolated" S2
 - ~1 Hz* (cathode, delayed e⁻)
- Max. Drift time: 2.25 ms

A strong position dependence of delayed e-, due to correlation with ⁸⁸Y gamma on detector surface

NEST parameterization

Paramete	er NEST v2	Prior	Marginal posterior
α	$11.0^{+2.0}_{-0.5}$	[8.5, 21]	$12.1_{-2.3}^{+1.5}$
β	$1.10^{+0.05}_{-0.05}$	[0.85, 1.35]	$0.98^{+0.09}_{-0.15}$
γ	$0.0480^{+0.0021}_{-0.0021}$	0.0375, 0.0585	$0.0447^{+0.0052}_{-0.0077}$
ϵ	$12.6^{+3.4}_{-2.9}$	[0, 29.6]	$13.3^{+5.2}_{-5.8}$
ζ	$0.3^{+0.1}_{-0.1}$	[0, 0.8]	$0.4^{+0.3}_{-0.2}$
η	2^{+1}_{-1}	[-3, 7]	3^{+2}_{-2}
θ	$0.30^{+0.05}_{-0.05}$	[0.05, 0.55]	$0.28^{+0.16}_{-0.17}$
ι	$2.0_{-0.5}^{+0.5}$	[-0.5, 4.5]	$2.2^{+1.8}_{-1.6}$
F_{ex}	0.4	[0, 1]	$0.5^{+0.3}_{-0.3}$
F_i	0.4	[0, 1]	$0.6^{+0.4}_{-0.3}$
ξ	0.50	[0, 1]	$0.48^{+0.33}_{-0.34}$
ω	0.19	[0, 1]	$0.40^{+0.28}_{-0.39}$

In YBe fitting, δ is fixed to -0.0533 to avoid degeneracy, because of single drift field strength of (23±1.5) V/cm

	XENON Viestake Liviandrieu
a	Scaling on NR total quanta. Default value is $11^{+2.0}_{-0.5}$ keV ^{-b} .
b	Power-law exponent for the NR total quanta. Default value is 1.1 ± 0.05 .
ς	Field dependence in NR light and charge yields, with mass-density-dependent scaling (Equation (11)).
ρ_0	Reference density for scaling density-dependent NEST functions: 2.90 g/cm ³ .
v	Hypothetical exponential control on density dependence in ς ; the default value is 0.3.
γ	Power-law base for the field dependence in ς . Default value is 0.0480 ± 0.0021 .
δ	Power-law exponent in the field dependence in ς ; default value is -0.0533 \pm 0.0068.
ϵ	Reshaping parameter for NR charge yields, controlling the effective energy scale at
	which the charge yield behavior changes. The default value is $12.6^{+3.4}_{-2.9}$ keV.
p	Exponent which controls the shape of the energy dependence of the \overline{NR} charge yields at energies greater than $\mathcal{O}(\epsilon)$. Default value is 0.5.
ζ	Controls the energy dependence of the NR charge yields roll-off at low energies. Default value is 0.3 ± 0.1 keV.
η	Controls energy-dependent shape of the NR charge yields roll-off at low energies. Default value is 2 ± 1 .
θ	Controls the energy dependence of the NR light yields roll-off. Default value is 0.30 \pm 0.05 keV.
l	Controls the shape of the energy dependence of the NR light yields roll-off. Default value is 2.0 ± 0.5 .
F_q	Fano-like factor for statistical fluctuations. For ERs, this is proportional to $\sqrt{E \cdot \mathcal{E}}$; see Equation (7). For NRs, this is separated into fluctuations for N_{ex} and N_i ; the default value is 0.4 for both in NEST v2.3.11, while the values were 1.0 in previous NEST versions. (F_{ex} was underestimated to be conservative for low-mass WIMPs.)
σ_p	Non-binomial contribution to recombination fluctuations, modeled as a skew Gaussian in electron fraction space.
A	Amplitude of non-binomial recombination skew Gaussian. For NRs, this is a constant 0.04 (v2.3.11) or 0.1 (v2.3.10). For ERs, it is field-dependent: $A = 0.09 + (0.05 - 0.09)/(1 + (\mathcal{E}/295.2)^{251.6})^{0.007}$), where 0.05 was 0.055 in 2.3.10
ξ	Centroid-location parameter of the non-binomial recombination skew Gaussian. Default value for ERs is an electron fraction of 0.45, but 0.5 for NRs.
ω	Width parameter for the non-binomial recombination skew Gaussian. Takes value of 0.205 for ERs and 0.19 for NRs.
α_p	Skewness parameters for the non-binomial recombination skew Gaussian. Takes the value -0.2 for ERs, while being zero for NRs.
α_r	Additional skewness in the recombination process itself. Field- and energy- dependent equations can be found in Ref. [59] for ERs, while this is fixed at 2.25 for NRs, with evidence of higher values in [59].

XENON Westlake | DM and neutrino lab

eXtreme Gradient Boosting (XGBoost) Classifier

Log loss

Features:

- width and rise time of the main S2 signals
- time, position, and width differences between the main and alternative S2 signals
- drift time between the main S1 and S2 signals

Lowest observable energy

light yield: $0.56 \pm 0.02 \text{ keV}_{NR}$ charge yield: 0.62 ± 0.03 keV_{NR}

Low energy neutron calibration sources

	Energy			
Source	Range (MeV)	Distribution	Yield	Timing
²⁵² Cf	0-10 (average of 2)	Continuous	10 ³ n/s/μCi	γ-Tagging ^a
Fission reactors	0-10 (average of 2)	Continuous	10 ¹² -10 ¹⁶ n/s/MW _{th}	NA
AmBe	0–10	Continuous	$\sim 5 \times 10^{-5} \text{ n/}\alpha$	γ-Tagging ^a
PuBe	0–10	Continuous	\sim 5 × 10 ⁻⁵ n/ α	γ-Tagging ^a
AmLi	0-1.5 (average of 0.45)	Continuous	$\sim 10^{-6} \text{ n/}\alpha$	ND
SbBe	0.023	Monoenergetic	~10 ^{−5} n/γ	NA
YBe	0.152	Monoenergetic	~10 ^{−5} n/γ	NA
D-D	2–3	Monoenergetic	$\lesssim 10^9 \text{ n/s}$	≲10 μs
D-T	13–15	Monoenergetic	$\lesssim 10^{10} \text{ n/s}$	≲10 μs
p-Li	0–2	Monoenergetic	Varies ^b	≳1 ns
p-V	0-0.2	Monoenergetic	Varies ^b	\gtrsim 1 ns

Annual Review of Nuclear and Particle Science, Vol. 73:95-121, 2023