Contribution ID: 93 Type: Oral

Detector response study of cryogenic scintillating Li_2MoO_4 detectors for next generation $0\nu\beta\beta$ search

Tuesday 26 August 2025 14:40 (20 minutes)

Next generation 100 Mo based neutrinoless double beta decay searches like AMoRE and CUPID require a precise understanding of the detector response of cryogenic 100 Mo based detectors at the Q-value (3034 keV) of the $0\nu\beta\beta$ decay. However, common long-lived calibration sources like 208 Tl provide the last intense calibration peaks at or below 2.6 MeV and hence require an extrapolation to the region of interest (ROI). In the CUPID-Mo demonstrator we operated 20 enriched ${\rm Li}_2{\rm MoO}_4$ detector modules at ~20 mK for an extended period of more than 1 year proving the competitiveness of this detector tenchnology for future $0\nu\beta\beta$ searches. We also performed a dedicated ~3 week calibration campaign with a specially irradiated $^{56}{\rm Co}$ source to directly assess the detector response with high energy γ lines at and above the $^{100}{\rm Mo}$ Q-Value. In this contribution we will present results of this calibration campaign with respect to a typical detector response extrapolation in terms of energy bias and energy resolution broadening at the Q-value of $^{100}{\rm Mo}$. In addition, the rich γ spectrum of the $^{56}{\rm Co}$ source allowed for an assessment of the detector response for different event topologies in particular of well localised electron-positron pair creation events with escape of the two 511 keV γ 's versus multi-site events like typical Compton + Photoabsorption events for full energy peaks in the few MeV range. We observe a small but statistically significant shift of ~0.6 keV in the energy reconstruction of these event types, which if confirmed should be considered as systematic for the $0\nu\beta\beta$ ROI.

Collaboration you are representing

CUPID-Mo

Author: SCHMIDT, Benjamin (CEA IRFU/DPHP)

Presenter: SCHMIDT, Benjamin (CEA IRFU/DPHP)

Session Classification: Neutrino Physics and Astrophysics

Track Classification: Neutrino Physics and Astrophysics