Sensitivity of the CUPID experiment

Pía Loaiza, on behalf of the CUPID collaboration TAUP 2025, Xichang, China

SAPIENZA

CUORE Upgrade with Particle IDentification

- Near future bolometric $0\nu\beta\beta$ experiment in existing CUORE infrastructure at LNGS
- Li₂MoO₄ scintillating bolometers, 100 Mo ($Q_{\beta\beta} = 3034 \text{ keV}$)
- Fully explore Inverted-Ordering and part of Normal Ordering region

Scintillating bolometers

• Heat and light detection allows α rejection > 99.7%

CUPID detectors

- 450 kg Li₂MoO₄
- 240 kg ¹⁰⁰Mo (95% enrichment)
- 57 towers, each with 14 x 2 crystals
- Two light detectors for each crystal
 - 1596 Li₂MoO₄ crystals
 - 1710 Ge NTL Light Detectors

Physics goal:

• $\tau_{1/2} \sim 10^{27} \text{ years} \rightarrow \text{discovery in m}_{\beta\beta} \sim 10 \text{ meV}$

Requires:

- Background Index: 1.0 · 10⁻⁴ counts/(keV·kg·y)
- Energy resolution: 5 keV FWHM at $Q_{\beta\beta}$
- 10 years livetime

Can we do it?

Background projections from CUORE and CUPID-Mo background models and detailed simulations:

- 1. GEANT-4 simulations: implemented detailed geometry of CUORE cryostat and detector towers according to baseline design
- 2. Simulate detector response: energy resolution, light yield, NTL light detector response in light and ionization
- 3. Selection cuts:
 - Light yield: remove α particles
 - Delayed coincidences: remove events from ²¹⁴Bi and ²⁰⁸Tl decays

Events with energy deposit in only one crystal

Select events in ROI: (3034 ± 15) keV (avoid 3000 keV and 3053 keV γ 's from 214 Bi)

Background sources

From radioactivity

- Crystals
- Holders: Cu frames, PTFE supports, CuPEN readout

- 10 mK components
- Cryostat shields and infrastructure

- Muons
- Neutrons
- $2\nu\beta\beta$ pile-up

Backgrounds from radioactivity: Method

- Use probability density functions of the activities from CUORE/CUPID-Mo background models w_i
- Sample full posterior distribution for each step in the Markov Chain:

$$b_i = \sum_{j=1}^{\text{Nsources}} \text{Pois}(N_j) \frac{w_{i,j}}{\Delta E \times N_{gen}}$$

• Translate the activity pdf to Background index pdf using N_j and N_{gen} , the number of events in the ROI and the number of generated events from CUPID simulation

• Obtain the marginalised posterior as the mode ± smallest 68% interval

Projected background from crystals

- Probability density functions from CUPID-Mo background model [EPJC 83, 675 (2023)]
- 226 Ra/ 228 Th bulk : $<0.2 \mu Bq/kg / 0.4 \pm 0.2 \mu Bq/kg \rightarrow (1.4 \pm 0.6) \cdot 10^{-6} \text{ counts/(keV·kg·y)}$
- 226 Ra/ 228 Th surface: $2 \pm 0.5 \text{ nBq/cm}^2 / < 2.5 \text{ nBq/cm}^2 \rightarrow (9.0 \pm 4) \cdot 10^{-6} \text{ counts/(keV·kg·y)}$
- Cosmogenics: 90 days at sea level and 1 year cooling down (ACTIVIA). 42 K, 82 Rb, 88 Y, 56 Co $\rightarrow 2.1 \cdot 10^{-6}$ counts/(keV·kg·y)

The dominant background in the ROI is the surface contamination.

Can be further decrease improving polishing and handling

Projected background from close components

Probability density functions from CUORE background model [PRD 110, 052003 (2024)]

```
^{226}Ra < 0.5 µBq/kg
^{228}Th < 0.4 µBq/kg
      ↓ Bulk
```

```
8.4 \pm 0.7 \, \text{nBq/cm}^2
                                                              11.5 \pm 0.5 \, \text{nBg/cm}^2

↓ Surface

< 1.0 \cdot 10^{-6} \text{ counts/(keV} \cdot \text{kg} \cdot \text{y}) (4.1 \pm 0.4) \cdot 10^{-5} \text{ counts/(keV} \cdot \text{kg} \cdot \text{y})
```


NOSV copper + PTFE spacers + CuPEN readout

Dominated by surface copper frames. Improvements in progress:

- Cleaner machining practices
- More effective cleaning and storage conditions

Projected background from radioactivity

Cryostat and shields

• Probability density functions from CUORE background model [PRD 110, 052003 (2024)]

Total background from radioactivity

Other cryostat shields: background from bulk

2νββ Pile-up

• Random coincidence of $2\nu\beta\beta$ decay of 100 Mo can populate the ROI

• Rejection via pulse shape analysis of Light Detector signals

- Profit from faster Light Detector pulse
- Improve Signal to Noise ratio through Neganov-Trofimov-Luke effect
- Current performances of NTL Light Detectors
- \rightarrow Pile -up background $\sim 0.5 \cdot 10^{-4}$ counts/(keV·kg·y)

CUPID Background projection from simulations

BI = $1.15 \cdot 10^{-4}$ counts/(keV·kg·y)

68% interval = $(0.86, 1.44) \cdot 10^{-4}$ counts/(keV·kg·y)

CUPID Background projection from simulations

BI = $1.15 \cdot 10^{-4}$ counts/(keV·kg·y)

68% interval = $(0.86, 1.44) \cdot 10^{-4}$ counts/(keV·kg·y)

We are testing an improved version of the tower geometry → expect background reduction on surface contamination from close components

Energy resolution of Li₂MoO₄ crystals


```
EPJC 77, 785 (2017)
AIP Conf. Proc. 1894 020017 (2017)
EPJC 80, 44 (2020)
JINST 16 P02037 (2021)
JINST 18 P06018 (2023)
```

- Preselection baseline < 6 keV
- Measurements in several cryostats
- Mean: 6.0 keV FWHM at 2615 keV
- Improvement through optimization of thermal sensor dimensions and coupling to the crystals plus cryostat upgrade

Sensitivity calculation: Parameters and method

Parameters to evaluate CUPID baseline sensitivity

Crystal mass = 450 kg Isotope enrichment = 95%

Livetime = 10 years Containment efficiency = 77.8 % (from simulations) Analysis efficiency = 92 % Background Index = $1.0 \cdot 10^{-4}$ counts/(keV·kg·y) Energy resolution, FWHM = 5 keV at Q $\beta\beta$

Method

- Frequentist and Bayesian analysis based on likelihood
- Generate pseudo-experiments:
 - Background
 - Signal

CULID

15

arXiv: 2504.14369

Discovery sensitivity in Frequentist analysis

• We have two hypothesis. H_0 : decay rate $\Gamma = 0$ and H_1 : $\Gamma > 0$

arXiv: 2504.14369

• Define the test statistic comparing the likelihoods

$$t_P(\Gamma=0) = -2 \ln rac{H_0}{H_1} = -2 \ln \left(rac{\mathcal{L}(0)}{\mathcal{L}(\hat{\Gamma})}
ight)^{ ext{Background-only hypothesis}}$$

• Generate pseudo-experiments for different values of Γ and compute the background-only p-value. A discovery can be claimed if p is smaller than some cutoff.

- 3σ discovery if p < 0.14%
- $T_{1/2} = 1.0 \cdot 10^{27} \,\mathrm{y}$

$M_{\beta\beta}$ discovery sensitivity

$$T_{1/2}^{-1} = g_A^4 G_{0\nu} |M_{0\nu}^2| m_{\beta\beta}^2 / m_{e}^2$$

Model	NME	Reference		
pn-QRPA	3.90	P.R.C 91, 024613(2015)		
pn-QRPA	5.850	P.R.C 87, 045501 (2013)		
IBM-2	4.22	P.R.C 91, 034304 (2015)		
EDF	6.58	P.R.L. 111, 142501 (2013)		
	6.588	P.R.C 91, 024316 (2015)		

- $T_{1/2} = 1.0 \cdot 10^{27} \,\mathrm{y}$
- $m_{\beta\beta} = 12.2 20.6 \text{ meV}$

Model	NME	Reference
Shell (effective operator)	2.240	PRC 105 (2022) 3, 034312
Shell (bare operator)		

arXiv: 2504.14369

Discovery: Probability = 50%

M_{ββ} discovery sensitivity: Shell model and M_S

arXiv: 2504.14369

Model	NME	m_{etaeta}
Shell (effective operator)	2.240	35.9 meV
Shell (bare operator)	3.962	20.3 meV

$$M_L^{0\nu} + M_S^{0\nu}$$
 PRC 107 (2023) 4, 044305

Model	NME	m_{etaeta}	
pn-QRPA	4.07 -7.36	19.8 - 10.9 meV	

Discovery: Probability = 50%

- $T_{1/2} = 1.0 \cdot 10^{27} \text{ y}$
- $m_{\beta\beta} = 12.2 20.6 \text{ meV}$

Sensitivity for CUPID baseline

Parameter	3σ Frequentist Discovery	Frequentist Limit (90 % C.L.)	Bayesian Limit (90 % C.I.)
T _{1/2}	1.0 x 10 ²⁷ yr	> 1.8 x 10 ²⁷ yr	> 1.6 x 10 ²⁷ yr
m_{etaeta}	12.2 - 20.6 meV	< 9.0 - 15.2 meV	< 9.6 - 16.3 meV

Impact of Background Index and energy resolution on T_{1/2} sensitivity

arXiv: 2504.14369

Summary

- CUPID Background projections are based on CUORE and CUPID-Mo background models and detailed simulations. The prediction is compatible with the Background Index goal: 1.0 · 10⁻⁴ counts/(keV·kg·y)
- We developed a Frequentist and Bayesian frameworks and compute the discovery and exclusion sensitivity of CUPID to $0\nu\beta\beta$.
- CUPID will be able to fully explore the inverted hierarchy region with a discovery sensitivity:
 - $T_{1/2} = 1.0 \cdot 10^{27} \text{ y}$
 - $m_{\beta\beta} = 12.2 20.6 \text{ meV}$
- CUPID can rule out the Inverted Hierarchy of neutrino masses in a majority of nuclear models
- A discovery is very likely for most favorable nuclear models for the smallest $m_{\beta\beta}$ values in the IH

Background from muons and neutrons

Muons

- Additional muon veto. Construction on-going
- From simulations, muon rejection efficiency \sim 98 % \rightarrow 1.3 \cdot 10⁻⁶ cts/(keV·kg·y)

Neutrons

- Neutron shielding to be expanded to mitigate (n,γ) reactions in Mo and Cu
- With additional 10 cm of polyethylene on the top and at sides, neutron backgrounds suppressed to $\sim 2 \cdot 10^{-6} \, \text{cts/(keV·kg·y)}$

Exclusion Sensitivity in Bayesian framework

• Extract directly the likelihood distribution of the decay rate for each pseudo-experiment (with BAT), in which we injected zero signal

- Flat prior on the decay rate, Γ
- Extract the 90% c.i for each pseudo-experiment

- $T_{1/2} > 1.6 \cdot 10^{27} \text{ y (90\% c.i)}$
- $m_{\beta\beta} < 9.6 16.3 \text{ meV}$
- $m_{\beta\beta} < 9.6 28.2 \text{ meV}$ (including shell model)

Impact of Background Index and energy resolution on T_{1/2} sensitivity

Background index	$\hat{T}_{1/2}$	\hat{m}_{etaeta}
$\times 10^{-4}$ [counts/keV/kg/yr]	$10^{27} [yr]$	[meV]
1.5	0.8	13.2–22.2
1.0	1.0	12.2–20.6
0.6	1.2	11.0–18.7
0.2	1.7	9.3–15.7

Energy resolution	$\hat{T}_{1/2}$	$\hat{m}_{oldsymbol{eta}oldsymbol{eta}}$
FWHM [keV]	10^{27} [yr]	[meV]
10	0.7	14.4–24.3
7.5	0.8	13.4–22.6
5	1.0	12.2–20.6

CUPID 2