R&D program for neutrinoless double beta decay search at JUNO

JUNO Detector

- Largest LS detector ever (20 kton), designed for NMO determination with reactor $\overline{\nu_e}$
- 650m rock overburden underground
- 35.4m acrylic vessel covered by 20"+3" PMTs (75%+3% photocoverage)

JUNO Status

- 10 years endeavor of construction of the experiment
- Ready to start physics data taking in August
- Determine NMO with 6.5 years of data
- Upgrade for 0vbb decay search after NMO determination

JUNO- $0\nu\beta\beta$ upgrade

 JUNO offers an unique opportunity to search for 0vββ

- 20 kton LS → 100-ton scale isotope loading
 - e.g., <u>Tellurium OR Xenon</u>
- Low background
- Energy resolution < 3% @ 1 MeV →
 2.4x better than KamLAND-Zen
- Critical R&D
 - Te route: Isotope loading technology
 - Xe route: cost effective enrichment & clean balloon
 - Background control

Concept of the experiment

TeLS R&D program

2020: Azeotropic distillation approach developed → >5% Te mass loading

2021: Absorbance at 430 nm unchanged for 0.6% Te loading

2022~2023: R.T. synthesis approach established to decrease safety risks

2024: Synthesis and purification protocol established for Te-LS production

Exploratory stage

Technical Breakthrough

Application-oriented

2017 - 2019

2020 - 2024

2025 -

2017: inorganic Te + surfactant

2018: liquid-liquid extraction

2019: organic Te-diol compounds

2025: 100 kg production demonstration

<u>Lab studies</u>: L.Y. optimization, stability test (>3
years), Te-LS transparency characterized by A.L.,
develop methods for radioactive impurities removal

Excep. high Te-doping conc.(3~5%)
No Impact on LS Optical Perf.
Ultra-low rad. Background
Stability >10 years

Technical Route 1: Azeotropic distillation approach

Innovation Highlights: water-free reaction → enhanced solubility and stability

Advantages: Te>>5%, Uniform

Transparent, and Stable

Patent: ZL 202011370855.5

Publication: NIM A 1049 (2023) 168111

Technical Route 2: Room temp. Syn. approach

Innovation Highlights:

No heating required, R.T. Synthesis

Advantages: Performance unchanged,

greener & more scalable

Patent: applied

Publication: *in preparation*

Route 1: Azeotropic distillation approach

- Water-free environment for the synthesis
- No extra water introduced into the reaction system
 - Solid state telluric acid used directly instead of being dissolved in the water
- Water generated removed continuously by azeotropic distillation
 - Azeotropic solvent → Acetonitrile, for its relatively lower boiling point (81.6 °C) and higher water content (16%) in azeotrope

Route 1: performance

- Ultrahigh Te Solubility
 - miscible with LAB, capability of Te loading in JUNO LS: > 5%
- Exceptionally High Transparency & Long-Term Stability
 - limited influence on the absorbance of scintillation solvent and stable for 3.5 years
- A one-step synthesis
 - simple, the product can be used for preparing Te-LS directly without post-processing, easily Scalable for mass production
- Broad applicability to diverse diols
 - a serials of diols with more sophisticated structures can be used since the reaction is greatly facilitated by the removal of water

Route 2: Room temperature Synthesis approach

- **Disadvantage** of Azeo. **Dist. Approach**: safety risks associated with large-scale heating and distillation of low-boiling-point solvents (acetonitrile, 81.6 ∘C)
- Developed a Room-Temperature Synthesis approach
 - one-step synthesis at room temperature
- Excellent properties of Te-samples:
 - Exceptional optical transparency (ΔAbs(430nm)/%Te ≤ 0.0003)
 - Long-term spectral stability exceeding or approaching 1 year till now for both 1% and 3%
 Te formulations
 - Outperform even those produced by the Azeo. Dist. Method
- A green, efficient alternative for large-scale Te-LS production for nextgeneration neutrinoless double-beta decay experiments

Progress of 100-kg production

- Bulk purification methods for raw materials with corresponding QC standards and protocols developed
 - Extensive research on optical purification method
 - A combined purification approach for both purification efficiency and cost
 - Dramatic cost reduction with superior purity compared to expensive lab purification
- Dual-Temperature (Room Temp./High Temp.) Reactor was designed and customized
- 100kg-scale production in 10 batches in progress
 - Higher-transparency Te-LAB samples were obtained, >50 kg
 - Te-LAB samples from 1st and 2nd production exhibit absorption spectra far superior to the best lab samples.
 - Attenuation length of Te-LAB (0.5% doping) reaches 20m @ 430nm
 - L.Y. measurement is ongoing

Te samples w/ diff. formulations were prep. for mult. research purposes

Backgrounds

- Full background evaluation
 - ¹³⁶Xe loading as an example in 2016
 - 130Te loading estimate ongoing
- Advantage of large LS based detector

 negligible external material background
- Background contributions:
 - Cosmogenic isotope
 - Updates on spallation background on Te/Xe
 - B solar ν-e scattering
 - 2νββ
 - Internal LS background

Table 5. Summary of the projected backgrounds in the $0\nu\beta\beta$ ROI. For light cosmogenic isotopes, the values are from GEANT4 MC, while for FLUKA MC the total residual background would increase $0.07/\text{ROI/(ton}^{136}\text{Xe)/yr}$.

summary of backgrounds in 0νββ ROI				
$[ROI\cdot(ton\ ^{136}Xe)\cdot yr]^{-1}$				
2νββ	0.2			
$^8{ m B~solar}~\nu$	0.7			
cosmogenic background				
$^{10}\mathrm{C}$	0.053			
$^6\mathrm{He}$	0.063			
$^8{ m Li}$	0.016			
$^{12}\mathrm{B}$	3.8×10^{-4}			
others $(Z \leq 6)$	0.01			
$^{137}\mathrm{Xe}$	0.07			
internal LS radio-purity (10^{-17} g/g)				
²¹⁴ Bi (²³⁸ U chain)	0.003			
208 Tl (232 Th chain)	_			
²¹² Bi (²³² Th chain)	0.03			
external contar	external contamination			
²¹⁴ Bi (Rn daughter)	0.2			
total	1.35			

Cosmogenic background on ¹²C

- JUNO: 650 m rock overburden
- Long-lived μ -spallation isotope could become background

Table A9. The estimated rates for cosmogenic isotopes in JUNO LS by FLUK! simulation, in which the oxygen isotopes are neglected. The decay modes and Q value are from TUNL Nuclear Data Group [475].

Isotopes	Q (MeV)	$T_{1/2}$	Rate (per day)
³ H	0.0186 (β [−])	12.31 year	1.14×10^{4}
⁶ He	3.508 (<i>β</i> [−])	0.807 s	544
⁷ Be	$Q_{EC} = 0.862 (10.4\% \ \gamma, E_{\gamma} = 0.478)$	53.22 d	5438
⁸ He	10.66 ($\beta^-\gamma$: 84%), 8.63 (β^-n : 16%)	0.119 s	11
⁸ Li	16.0 (β ⁻)	0.839 s	938
в	16.6 (β ⁺)	0.770 s	225
⁹ Li	13.6 (β^- : 49%), 11.94 ($\beta^- n$: 51%)	0.178 s	94
°C	15.47 (β^+p : 61.6%, $\beta^+\alpha$: 38.4%)	0.126 s	31
¹⁰ Be	0.556 (β [−])	1.51e6 year	1419
¹⁰ C	2.626 ($\beta^{+}\gamma$)	19.29 s	482
11Li	20.55 ($\beta^- n$: 83%, $\beta^- 2n$: 4.1%)	0.00875 s	0.06
¹¹ Be	11.51 ($\beta^-\gamma$: 96.9%), 2.85 ($\beta^-\alpha$: 3.1%)	13.76 s	24
¹¹ C	0.960 (\beta^+)	20.36 min	1.62×10^4
¹² Be	11.708 ($\beta^-\gamma$, β^-n : 0.5%)	0.0215 s	0.45
^{12}B	13.37 $(\beta^-\gamma)$	0.0202 s	966
¹² N	16.316 ($\beta^{+}\gamma$)	0.0110 s	17
^{13}B	13.437 $(\beta^-\gamma)$	0.0174 s	12
¹³ N	1.198 (<i>β</i> ⁺)	9.965 min	19
^{14}B	20.644 ($\beta^-\gamma$, β^-n : 6.1%)	0.0126 s	0.021
¹⁴ C	0.156 (<i>β</i> [−])	5730 year	132
¹⁵ C	9.772 (β [−])	2.449 s	0.6
¹⁶ C	8.010 (β ⁻ n: 99%)	0.747 s	0.012
¹⁶ N	$10.42~(\beta^-\gamma)$	7.130 s	13
¹⁷ N	8.680 ($\beta^-\gamma$: 5%), 4.536 (β^-n : 95%)	4.173 s	0.42
¹⁸ N	13.896 ($\beta^-\gamma$: 93%), 5.851 (β^-n : 7%)	0.620 s	0.009
Neutron			155 000

Background on ¹²C after Veto

- Excellent μ tagging and tracking capability
- Dedicated veto strategies for different types of muons
- Major isotopes can be efficiently rejected

Refs: arXiv:2006.11760, Chin. Phys. C 45 (2021) 023004 arXiv:1610.07143, Chin. Phys. C 41 (2017) 053001

Cosmogenic Isotopes	Background Index unit: ROI-1 (ton 136Xe)-1 yr-1		
	No veto	w/ veto	
¹⁰ C	16.4	0.053	
⁶ He	4.9	0.063	
⁸ Li	1.5	0.016	
¹² B	1.9	3.8e-4	
¹³⁷ Xe	2.3	0.07	
Others (Z≤6)	0.51	0.01	
Total		0.2	

Te spallation isotopes yield calculation

- Muon induced spallation isotopes from Te
- Isotope yield calculation with FLUKA and GEANT
 - Variations among models
 - Identification of major long lived isotopes

Development of Rejection method

- Understanding of shower and attempts to reject background
 - Using accompanying neutrons information
 - Powerful rejection achieved for short lived isotopes
 - 98% bkg. rej. @ ~80% sig eff. with BDT
 - Advanced ML like GNN and transformer expected to improve further
 - Long lived isotopes are more difficult for event-by-event rejection
 - · Large number of preceding muons, convection et al
 - Multi-site discrimination will help

Multi-site discrimination

- Interaction length of ~1-2 MeV gammas in LAB 10-30 cm
 → 0.5-1.5 ns time of flight
- Timing resolution: ~1ns (Dynode PMTs)
- Further suppression of ultra-long-lived isotope is promising
- Analysis ongoing

Summary

- After years of efforts, promising TeLS technical routes have been established
 - High loading concentration (>5% Te), excellent optical performance (20m A.L. 0.5% Te) and stability (>3 years 0.6% Te) achieved
 - Core technologies on enhancing transparency and stability mastered
 - Light yield optimization is our next goal
- We made comprehensive FLUKA/GEANT study on cosmogenic spallation isotope background and developed efficient rejection strategy
- We are updating the sensitivity evaluation with more realistic and up-to-date JUNO detector information
- JUNO has great potential to explore the $|m_{\beta\beta}|$ -meV region w/ >100 tons of $0\nu\beta\beta$ isotope with clear route for technologies R&D
- Stay tuned!