Updated background simulation and detector design for AMoRE-II

Eunju Jeon IBS CUP August 27, 2025

AMoRE (Advanced Mo-based Rare process Experiment) It aims at searching for neutrinoless double beta decay (0νββ)

- To determine whether the neutrino is a Majorana particle
- To test the existence of lepton number violating process

To estimate the absolute neutrino mass scale

For light neutrino exchange model:

Phase factor
$$[T_{1/2}^{0\nu}]^{-1} = G_{0\nu} |M_{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$$
 Half-life neasured element element Effective $0\nu\beta\beta$ neutrino mass, $\langle m_{\beta\beta} \rangle = \left|\sum_{ei}^3 U_{ei}^2 m_i\right|^2$

If the decay rate of the 0νββ is precisely measured, the absolute neutrino masses can be calculated → It helps to determine neutrino mass hierarchy

(for zero background)

$$T_{1/2}^{0\nu} \propto M \cdot T$$

(for finite background)

$$T_{1/2}^{0\nu} \propto \sqrt{\frac{M \cdot T}{B \cdot \Delta E}}$$

- Half-life limits are proportional to the detector mass M and DAQ time T, if finite background, sqrt(MT)
- To discover a sharp peak @ Q-value:
 - Good energy resolution
 - Extremely low background

Projected backgrounds

for experimental sensitivity

- Understanding and reduction of background
 - Careful selection of detector and shielding component materials
 - Heavy shielding strategies:
 - Deep underground installation
 - Pb, B, CH
 - Rn-free air supply
 - µ-veto system

AMoRE-II experimental setup at Yemilab

AMoRE-II experimental setup at Yemilab

Vibration damper

Shielding structure and muon veto system

- Water Cherenkov detector with an active muon veto capability has been installed for the above part of the cryostat
- The plastic scintillator detector panels have been installed surrounding the cryostat on four sides and at the bottom

AMoRE-II simulation geometry

Near components (G1)

Far components (G2)

Structural materials

Geant4-based background simulation Background sources considered

- Geant4 10.4.2
- Near componts (G1) and far components (G2)
- $2\nu\beta\beta$ using Decay0
- Internal radioisotopes
- Pileup events
- Neutrons and muons

Neutron and muon-induced backgrounds

Astropart. Phys. 114 (2020) 60-67

- We simulated cosmic muons and neutrons, taking the mountain contour into account
- We estimated the background event rate in the (2–8) MeV with various shielding thicknesses applied to both lead shielding and water tank shielding
- Thickness of shielding layers has been optimized

Backgrounds of near (G1) and far (G2) components

Projected Background

Event rate [ckky]

12

Background contribution in ROI 2x10-5 1x10-4

Lead shield design update

To protect neutrons and gammas

 5 cm Boliden lead is replaced with 5 cm OFE copper for AMoRE-II stage 2

			vities q/kg)	Background level (x10 ⁻⁵ ckky)
Material	Supplier	Ra-226 (U-238)	Th-228 (Th-232)	5 cm shield layer
Lead	Boliden	0.48(12)	0.45(11)	3.44(28)
		U-238 (pg/g)	Th-228 (pg/g)	
OFE Copper	Aurubis	0.010(1)	0.0040(6)	0.08(1)

Filling gap with additional neutron shielding

Supplementary shielding

Filling gap with additional neutron shielding

Supplementary shielding

Filling gap with additional neutron shielding

Neutrons and rock gamma simulations

With updated shield design

	Background level (x10 ⁻⁵ ckky)		
	Radiogenic neutrons	Rock gammas	
Previous shield design	0.97(26)	< 1.03	
Updated shield design	0.51(8)	< 1	

Superconducting (SC) lead shield and inner lead shield

 Ultra-low Lemer Pax lead is used for them, with new measurements carried out at LNGS

Superconducting (SC) lead shield and inner lead shield

 Ultra-low Lemer Pax lead is used for them, with new measurements carried out at LNGS

Outer vacuum chamber (OVC)

 Replace with a purer STS 316 type for AMoRE-II stage 2

			Activities (mBq/kg)		Background level
Material		Ra-226(U-238)	Th-228(Th-232)	(x10 ⁻⁵ ckky)	
OVC	STS 304 type	HPGe	1.00(16)	2.36(22)	1.10(28)
	STS 316 type	XENON1T	< 0.55	< 0.5	< 0.6

Rn-less air

- Background requirement for AMoRE-II:
 - $0.29 + /-0.06 \text{ Bq/kg} \rightarrow 10^{-5} \text{ ckky}$
- Rn-less air supply
 - < 150 Bq/m³ for the summer season
 - < 50 Bq/m³ for other seasons
- Can reach < 100 mBq/m³
 - by reducing the volume to 1/5 and
 - by applying RRS in AMoRE Hall
 - → background level reaches 3x10-6 ckky

Copper post

Surface contamination

		Activities	(pg/post)	Background level
Company	NOSV Copper	U-238	Th-232	(x10 ⁻⁵ ckky)
	bulk (~15g)	4.4(6)	3.9(2)	0.24
Taesung Tech	HNO₃ etching	0.38(4)	0.97(2)	1.59(34)
	9—12µm (0.055g)	2.0(3)	4.2(7)	acceptable

- Copper post-surface contamination occurred during the thread-making process, depending on the manufacturer
- Based on the R&D for the surface treatment, the material becomes acceptable after removing 12 µm from the surface through several purification steps, performed following manufacturing by the selected company

PTFE clamps

- Currently, our measurement is at the detection limit
- To measure materials with very low activity, we require ultra-pure reagents and a crucible for sample preparation
- We will contact INFN to carry out the measurement

			Activities (mBq/kg)		Background level	
	Material	Techinque	U-238	Th-232	(x10 ⁻⁵ ckky)	
Teflon Clamps	PTFE	ICP-MS (XENON1T)	< 0.12	< 0.04	< 0.53	
		INAA	<< 1.24 (DL)	<< 0.82 (DL)		

Updated background contributions in ROI

Summary

- We have updated the background projection for AMoRE-II to 1.3x10-4 Counts/keV/kg/year (ckky), based on intensive background simulations performed with Geant4
 - Primary background source was ²¹⁴Bi in the ²²⁶Ra-²¹⁰Pb decay sub-chain of ²³⁸U, located in the innermost layer of the outer lead shielding → it will be replaced with OFE copper shielding layer
 - Copper post-surface contamination occurred during the thread-making process, depending on the manufacturer → it becomes acceptable after removing 12 µm of the surface through several purification steps, performed after manufacturing by the selected company
 - We have measured ultra-low-activity lead and confirmed the background level of the shield layers made from it
 - Owing to the Rn-less air supply and the Rn Reduction System (RRS), the background level can be reduced to about 10-6 ckky in the ROI
- Currently, the main background source has been identified as pile-up events, which will be further studied and mitigated through machine learning analysis

Backup

Sensitivity of $T_{1/2}^{0 u\beta\beta}$

