

TAUP 2025

XICHANG SICHUAN, CHINA

2025.8.24 - 8.30

RELICS: Search for Coherent Elastic Neutrino-Nucleus Scattering from reactor neutrinos using LXeTPC

Jiachen Yu (USTC)

yujiachen@mail.ustc.edu.cn

On behalf of the RELICS collaboration

Xichang, Sichuan, China, TAUP2025

Coherent Elastic Neutrino-Nucleus Scattering: CEVNS

$\frac{d\sigma}{dT} = \frac{G_F^2}{4\pi} Q_W^2 M \left(1 - \frac{MT}{2E_V^2} \right) F(Q^2)^2.$

$$Q_W = N - (1 - 4\sin^2\theta_W)Z$$

$$Q_W \propto N \implies \frac{d\sigma}{dT} \propto N^2$$

D. Akimov et al, Science 357 (2017)

Physics:

weak mixing angle within Low-momentum transfer

Opportunities:

- Cross section proportional to the square of the number of nucleons
- **■** Smaller neutrino detectors

Challenges:

- low nuclear recoil energy
- Energy ROI for RELICS: [0.3,1]keV_{nr}

RELICS Experimental Design

Sanmen Nuclear Power Plant Taizhou, China

low energy region:

Energy ROI: [0.3,1] keV_{nr}

S2 ROI: [120, 240] PE

Fiducial Mass 32 kg, 62kg LXe in total

Technology of RELICS Experimental: LXe TPC

Advantages of LXe TPC:

- □ high single electron detection efficiency
- XY position reconstruction
- □ low threshold

low nuclear recoil energy:

- \square Energy ROI: [0.3,1] keV_{nr}
- □ S2 ROI : [120, 240] PE

S2-only analysis:

- □ S1 signal is too weak to detect
- **□** Further reduce the energy threshold

Low-threshold detection:

- ☐ Single PE trigger rate > 90%
- ☐ Single-Electron detection gain > 30 PE

Challenges: Background Sources on ground

Cosmic Ray Particles

- □ Cosmic µ
- **□** Cosmic neutron
- **□** Others...

Reactor

- □ Reactor Neutron
- Reactor γ
- □ Others...

Detector Material

- \square Material γ , β
- □ Others...

| Background ratio

- cosmic ray neutron 20.1%
- muon induced neutron 0.1%
- delayed electron 78.5%
- cosmic & meterial 1.3%

NR Background and Shielding Suppression

--- Cosmic-Ray neutron

---- Reactor & Environment neutron

NR Background:

- \square (7.7 \pm 0.7) \times 10 ⁻² kg ⁻¹·day ⁻¹ of [0.3,1] keV_{NR}
- □ Dominated by cosmic ray neutron

ER Background Sources and Suppression

Fiducial Volume:

R < 12 cm

Edge backgrounds

S2 width cut:

 \boxtimes S2 width > 0.22 μ s

Example 2 Liquid-gas interface backgrounds

ER Background:

 \square (3.10 \pm 0.10) \times 10 ⁻¹ kg ⁻¹·day ⁻¹·keV ⁻¹ average of [0,20] keV_{ER} before S2 width cut

Delayed Electrons (DE) Background

Delayed electron sources:

- ☐ Observed by large LXeTPCs experiments and prototype
- **□** Emission of electron following large energy deposition
- ☐ Pile-up of single electrons distorts the physical signal

- □ ~10 Hz muon flux
- ☐ Pile-up DE events rate higher than CEVNS events

Delayed Electrons Background Suppression:

Efficiency of Selection Method

	Signal Acceptance	Background Remaining
Pattern + Correlation	~52%	~0.01%
Waveform	~80%	~10%

Pattern + Correlation selection:

- □ CEvNS : Closer to single point events.
- **□** DE: More linked to the preceding muon track.

Waveform selection:

- **CEvNS**: Gaussion
- **DE: More dispersed**

Result:

- dead time cut ~ 20ms
- Several orders of magnitude reduction

Physical Potential for CEVNS & Improvement

0.15

0.20

0.25

 $\sin^2\theta_w$

0.30

0.35

0.40

CEVNS ROI: [120, 240] PE

Events / (32kg·year)		
CEVNS	4639.7	
Cosmic Ray Neutron	339.9	
Muon Induced Neutron	1.7	
ER	21.1	
DE Pile-ups	1325.1	

Delayed-electrons pile-up events will be dominant background

> Improve position reconstruction

Reactor neutrino liquid xenon coherent elastic scattering experiment

Chang Cai¹, Guocai Chen², Jiangyu Chen³, Rundong Fang⁴, Fei Gao^{1,*}, Xiaoran Guo^{5,6}, Jiheng Guo⁴, Tingyi He^{7,//}, Chengjie Jia^{1,‡} *et al.* (RELICS Collaboration)

Share v

Show more	~

Phys. Rev. D 110, 072011 - Published 18 October, 2024

DOI: https://doi.org/10.1103/PhysRevD.110.072011

Uncertainty of the weak mixing angle Caused by Qy uncertainty

> Low NR calibration

Physical Potential for Axion-like Particles

Dent et al., PRL 124, 211804 (2020)

Detection

Production

N

De-excitation of nucleus

Inverse Compton-like pair production Axion decay e⁺e⁻

pairs Inverse Primakoff

Physical Potential for Axion-like Particles

- 20 kg-year exposure
- Search for the reactor ALPs

Progress and Future Outlook - construction in 2025

water shielding:

solid shielding:

Shielding layer from outside to inside:

10 cm outer PE

10 cm lead

30 cm inner PE

$[0.3,1] \text{ keV}_{NR}$:

solid shielding: $(7.0\pm 0.4) \times 10^{-1} \text{kg}^{-1} \cdot \text{day}^{-1}$

water shielding: $(7.7\pm0.7)\times10^{-2}$ kg⁻¹·day⁻¹

Preliminary attempt:

- ☐ Background Model Validation (Cosmic background, Delayed Electron...)
- ☐ Technical Testing (Cryogenic System, Data Acquisition System...)
- **□** Physics Measurement

Summary

RELICS: detect CEVNS from reactor neutrinos using LXe-TPC in energy ROI [0.3,1] keV

- 1.RELICS will find ~4600 CEvNS events in 32 kg sensitive volume one year of exposure
- **▼** sufficent signal obsevation
- 2.Delayed-electrons pile-up events will be the dominant background, but can be suppressed by waveform and pattern-spacetime cuts
- **V** low background (shielding & cut selection.....)
- 2. The prototype has verified the feasibility of each sub-system for the RELICS experiment and the capability to detect single-electron signals and signals from calibration sources in the low-energy region.
- low threshold (single PE trigger rate& single-electron detection gain.....)
- The RELICS detector is scheduled for construction this year and will begin taking data in 2026

other report and poster for RELICS

Prototype test - report Lingfeng Xie 2025.8.27 17:00 Underground Laboratories

RELICS Dual-Phase Xenon Time Projection Chamber Prototype

Development, Construction, Operation

Lingfeng Xie, **Tsinghua University**On behalf of **RELICS** Collaboration

Prototype TPC design

Goal 1: Technology Validation

- ▼ Feasibility of hardware technology
- ✓ achieve an low detection threshold

Goal 2: Calibration Development

- R&D of calibration sources
- ▼ Detector response calibration

Goal 3: Software Framework

- Monte Carlo for **Light Collect Efficiency** map
- CNN for position reconstruction
- FEM for electric field modeling
- ▼ strax-based data analysis framework
- studying the delayed electron background

Purification Control - poster number: 290 Jiangfan Gu et.

Delayed Electron - poster number : 299 Yang Lei

Collaboration meeting 2024 @ GuangZhou

RELICS:REACTOR NEUTRINO LIQUID XENON COHERENT SCATTERING EXPERIMENT

Back up - Site design for RELICS

