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Complex Numbers in Quantum Theory

In quantum mechanics, wave-particle duality makes complex numbers

essential for describing a system’s state, dynamics, and interactions.

The postulates of quantum mechanics state that a quantum system

is described by a complex Hilbert space.

Key Questions

• Can quantum physics be reformulated using only real numbers?

• Are complex numbers used merely for mathematical convenience

or are they essential?

It is therefore essential to thoroughly investigate the role of

complex numbers in quantum systems!
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Motivation

1. Given the unique significance of imaginary numbers in quantum theory, recent developments have led to a

comprehensive formulation of imaginarity in quantum physics and quantum information theory

”Quantifying the Imaginarity of Quantum Mechanics” – J. Phys. A 2018

”Operational Resource Theory of Imaginarity” – PRL 2021

2. Resource theory of imaginarity quantifies and utilizes imaginary components for information processing

3. Related to resource theory of coherence, as it is basis dependent

4. Closely linked to quantum coherence since imaginary parts appear in off-diagonal density matrix elements

Neutrinos, existing as natural superpositions of mass eigenstates, provide an ideal physical system to test

imaginarity through oscillation dynamics!
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Measures of Imaginarity

• An imaginarity measure quantifies the amount of imaginary components in a quantum state

• For an imaginarity measure, denoted as I, to serve as a meaningful and consistent tool, it must satisfy several

criteria:

Faithfulness: The measure of imaginarity

should be non-negative for any quantum state,

i.e., I(ρ) ≥ 0.

Imaginarity Monotonicity: The measure of

imaginarity should not increase under the ap-

plication of real operations, i.e., if ϕ is a real

channel, then I[ϕ(ρ)] ≤ I(ρ)

1 ℓ1-norm of imaginarity

Encapsulates the essence of imaginarity by summing

the absolute values of the imaginary components of the

off-diagonal elements in the density matrix.

Iℓ1 (ρ) =
∑
i ̸=j

|Im(ρij )|

2 Relative entropy of imaginarity

Measures the entropic distance between the quantum

state and its real counterpart.

Ir (ρ) = S(Re(ρ))− S(ρ)

where S(ρ) = −Tr[ρ log ρ] is defined as the von

Neumann entropy.
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Neutrinos as Quantum Superpositions

• The mixing between the flavor and mass eigenstates is described by:∣∣∣νhα(l)〉 =
3∑

i=1

U∗
αi

∣∣∣νhi (l)〉
• The observation of flavour oscillations implies that neutrinos are massive.

• This may result in the generation of a small but finite magnetic dipole moment through higher-order quantum

loop corrections.

• Since the helicity mass eigenstates are not stationary in the presence of an external magnetic field, they must

be decomposed into the stationary spin mass eigenstates:∣∣∣νhi (l)〉 =
+1∑

s=−1

ks
i |ν

s
i (l)⟩

• For the three-flavour mixing, the evolution of the flavour eigenstate
∣∣νLα(l)〉 undergoing SFOs can be expressed

as: ∣∣∣νLα(l)〉 =
R∑

h′=L

τ∑
β=e

3∑
i=1

+1∑
s=−1

U∗
αiUβiC

Lh′
is e−iE s

i t
∣∣∣νh′β 〉

where CLh′
is = ⟨νh′i |P̂ i

s |νLi ⟩ is the plane-wave expansion coefficient, and P̂ i
s =

∣∣νsi 〉 〈νsi ∣∣ is the projection operator.
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Evolution of Two-flavour Neutrino Systems

The evolution of the flavor eigenstate
∣∣νLe,µ〉, in spin-flavor basis, can be written as:∣∣∣νLe,µ(θ, l)〉 = f1(θ, l)
∣∣∣νLe,µ〉+ f2(θ, l)

∣∣∣νRe,µ〉+ f3(θ, l)
∣∣∣νLµ,e

〉
+ f4(θ, l)

∣∣∣νRµ,e〉
where

2f1(θ, l) = cos2 θ e−iE+
i l + sin2 θ e

−iE+
j l

+ cos2 θ e−iE−
i l + sin2 θ e

−iE−
j l

2f2(θ, l) = cos2 θ e−iE−
i l + sin2 θ e

−iE−
j l − cos2 θ e−iE+

i l − sin2 θ e
−iE+

j l

2f3(θ, l) = − sin θ cos θ

[
e−iE+

i l − e
−iE+

j l
+ e−iE−

i l − e
−iE−

j l
]

2f4(θ, l) = − sin θ cos θ

[
e−iE−

i l − e
−iE−

j l − e−iE+
i l + e

−iE+
j l
]

The evolution of standard two-flavor FOs can be derived by setting the spin eigenvalues equal and eliminating

the spin-flipping dof!

From the state evolution, we can deduce the 4 × 4 density matrix ρSFOe,µ (θ, l) =
∣∣νLe,µ(θ, l)〉 〈νLe,µ(θ, l)∣∣ and 2 ×

2 density matrix ρFOe,µ(θ, l) = |νe,µ(θ, l)⟩ ⟨νe,µ(θ, l)|.
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Imaginarity in Flavour Oscillations (FO)

• The ℓ1-norm of imaginarity can be calculated using the density matrices:

Iℓ1
(
ρFOe,µ

)
=
∑
i ̸=j

∣∣∣∣Im(ρFOe,µ)ij
∣∣∣∣ =

∣∣∣∣∣sin 2θ sin

(
∆m2

ji l

2E

)∣∣∣∣∣
• Despite the initial neutrino states being different, the ℓ1-norm of imaginarity turns out to be the same for them

• ℓ1-norm of imaginarity is nonzero even for two-flavor FOs

• This underscores the significance of imaginarity as a resource coming from the intrinsic propagation dynamics

of neutrinos

• To calculate the relative entropy of imaginarity Ir (ρ) in two-flavor FOs, we evaluate:

| ⟨ν∗e,µ(θ, l)|νe,µ(θ, l)⟩ | =

√√√√cos4 θ + sin4 θ + 2 sin2 θ cos2 θ cos

(
∆m2

ji l

E

)

Both observables Iℓ1 (ρ) and Ir (ρ) will be nonzero only if the quantum state ρ contains imaginary components,

thereby serving as effective metrics of the imaginarity in the quantum state!
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Neutrino Spin-Flavour Oscillations (SFOs)

• Additional spin-flip degrees of freedom emerge from the neutrino magnetic moment which can interact with

magnetic fields and undergo SFOs [Giunti & Studenikin, Rev.Mod.Phys. 2015]

• In the minimally extended Standard Model (with right-handed neutrinos), the diagonal magnetic moments of

massive Dirac neutrinos can be calculated to be:

µν ≃ 3.2× 10−19
( mi

1 eV

)
µB

• In the ultra-relativistic limit, with equal magnetic moments for all neutrino states, the spin-flavour oscillation

phase is given by:

ξs
′s

ji = E s′
j − E s

i =
∆m2

ji

2E
+ µν(s

′ − s)B⊥

• Quantum coherence in SFOs persists over astrophysical distances! [Alok et al, PRD 2025]

Similar to the ℓ1-norm of coherence, the ℓ1-norm of imaginarity is also a basis-dependent measure -must be

evaluated for SFOs!
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Imaginarity in SFOs

• The ℓ1-norm of imaginarity can be calculated as:

Iℓ1
(ρSFO

e,µ ) = |sin θ cos θ|
{∣∣∣∣∣2(cos2 θ − sin2 θ) sin(ξ+−

ii l) cos

(
∆m2

21

2E
l

)∣∣∣∣∣ +
∣∣∣∣∣sin
(

∆m2
21

2E
l

)∣∣∣∣∣ (∣∣∣cos(ξ+−
ii l) − 1

∣∣∣ + ∣∣∣cos(ξ+−
ii l) + 1

∣∣∣)}

• The relative entropy of imaginarity can be calculated from:

∣∣∣⟨νL∗
e,µ(θ, l)|ν

L
e,µ(θ, l)⟩

∣∣∣ = [ cos4 θ + sin4 θ

2
(1 + cos(2ξ+−

ii l)) +
sin2 θ cos2 θ

2

{
cos(2ξ+−

ji l) + cos(2ξ−+
ji l) + 2 cos

(
∆m2

ij

E
l

)}] 1
2

In the absence of spin-flipping induced by the interaction of neutrinos with an external magnetic field, both

measures for the SFO system reduce to those of the FO system!
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Imaginarity Dynamics in Reactor Neutrino Experiments

• Nuclear reactors provide intense sources of coherent antineutrino fluxes, enabling precision studies of

oscillation parameters.

• Daya Bay → short-baseline (∼ 1.5 km), E = 1–10 MeV.

• KamLAND → medium-baseline (∼ 180 km), similar E range.

• We focus on these experiments since the analysis considers neutrino oscillations in vacuum.

Daya Bay KamLAND

• IFO
ℓ1

peaks where the survival probability

Pee changes most rapidly, indicating

maximal quantum interference.

• It vanishes when Pēē reaches its extrema

(maxima or minima), where the neutrino

state realigns with a flavor eigenstate

and becomes stationary with no mixing.
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Imaginarity Dynamics in GeV Muon Neutrinos

- Pμe
LR

- Il1(ρe,μ
SFO)

- Pμe

- Il1(ρe,μ
FO)

0 5000 10000 15000 20000 25000 30000
0.0

0.2

0.4

0.6

0.8

1.0

L (in km)

- Pμe
LR

- Ir(ρe,μ
SFO)

- Pμe

- Ir(ρe,μ
FO)

0 5000 10000 15000 20000 25000 30000
0.0

0.2

0.4

0.6

0.8

1.0

L (in km)

• The oscillatory behaviour shows that imaginarity

varies continuously with propagation distance.

• For SFO, the extrema of the imaginarity measures

are found to align closely with those of FOs.

• The imaginary component of the density matrix

reaches its maximum when the transition and

survival probabilities are approximately equal,

averaging around half!

• Imaginarity vanishes at the turning points of the

FO probability curve, where the neutrino mass

eigenstate aligns with a flavor eigenstate.

• This indicates that the maximum amount of

imaginarity enters the neutrino system when the

oscillations are least deterministic.

• Exhibits a similar trend to that observed in reactor

neutrino experiments.
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Imaginarity Dynamics in Three-Flavour Systems

• The complex phase δCP appears in the PMNS mixing

matrix and is anticipated to contribute to the imaginarity

measures.

• Similar to the case of two-flavour FOs, the imaginarity

measures remain non-zero, even when δCP = 0.

• Both the ℓ1-norm and the relative entropy of imaginarity

can be enhanced or suppressed compared to the case of

δCP = 0.

• For certain values of L, the dependence of imaginarity on

δCP is minor, while for others, the deviation from that of

δCP = 0 could be significant.

This reaffirms that imaginarity is embedded in the dynamics

of the neutrino system and persists even if the value of the

CP-violating phase in the leptonic sector is zero!
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Key Findings

Imaginarity in Two-Flavour

Systems

For the first time, we have

quantified imaginarity in neu-

trino systems using the ℓ1-

norm and relative entropy of

imaginarity.

We have demonstrated that

imaginarity persists as nonzero

even in the context of two-

flavor mixing, applicable to

both flavor oscillations and

spin-flavor oscillations.

Beyond CP Phase

Imaginarity as a resource in

neutrino systems is not exclu-

sively dependent on the CP

phase.

The imaginarity as a resource

can arise in the neutrino sys-

tem, from the intrinsic quan-

tum dynamics of the neutrino

mixing itself.

Quantum Resource

Our work establishes imaginar-

ity as a quantifiable resource

in neutrino physics, opening

new avenues for understanding

quantum aspects of these fun-

damental particles.

How to measure it remains an

open question!
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Thank you for your attention!
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