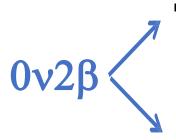


Xichang, August 27th, 2025

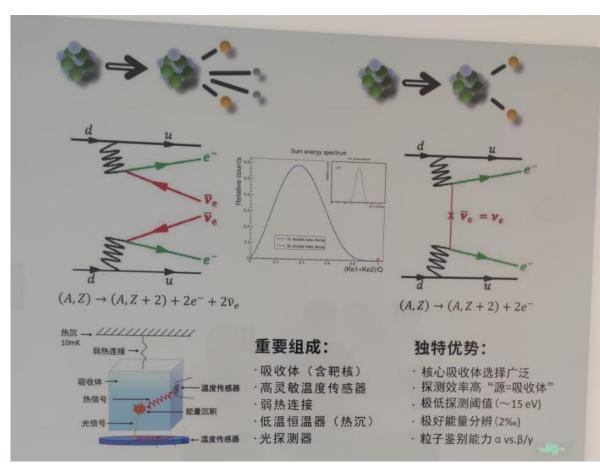
The CROSS demonstrator: structure, performance and physics reach

Andrea Giuliani

on behalf of the CROSS collaboration



$0v2\beta$ in a nutshell


- $0v2\beta$ is an inclusive test for the « creation of leptons »: $2n \rightarrow 2p + 2e^- \Rightarrow LNV$
- This test is implemented in the nuclear matter: $(A,Z) \rightarrow (A,Z+2) + 2e^{-}$
- Very rare (> 10²⁶ y)
- Energetically possible for 35 nuclei
- Experimentally relevant: 82Se, 76Ge, 100Mo, 130Te, 136Xe
- Signal: a peak in the sum-energy spectrum of 2e⁻ at Q_{2B}

Standard mechanism: neutrino physics $0v2\beta$ is mediated by light massive Majorana neutrinos (exactly those which oscillate)

CROSS

BSM non-standard mechanisms
 Not necessarily neutrino physics

From a poster in USTC, Hefei

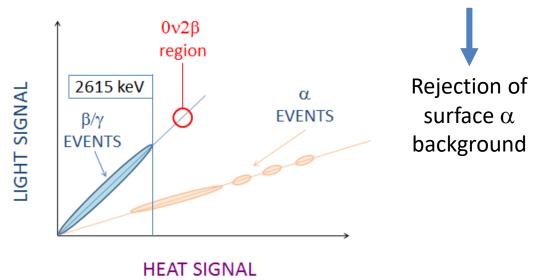
$$\mathbf{m}_{\beta\beta}$$
 = | | U_{e1} | 2m_1 + $e^{i\alpha 1}$ | U_{e2} | 2m_2 + $e^{i\alpha 2}$ | U_{e3} | 2m_3 | $1/\tau_{0\nu} \propto \mathbf{m}_{\beta\beta}^2$

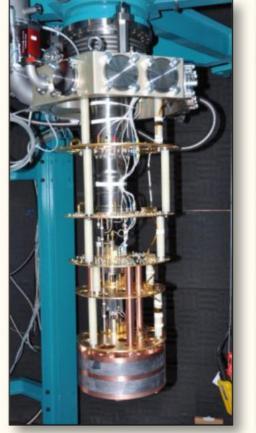
CROSS project

A standalone experiment and a test bench for CUPID

CROSS (Cryogenic Rare-event Observatory with Surface Sensitivity): $0v2\beta$ bolometric search

Two high Q-value isotopes studied (as in BINGO)


■ ¹⁰⁰Mo: Q-value = 3034 keV (as in CUPID-Mo, CUPID, AMORE))


■ ¹³⁰Te: Q-value = 2527 keV (as in CUORE)

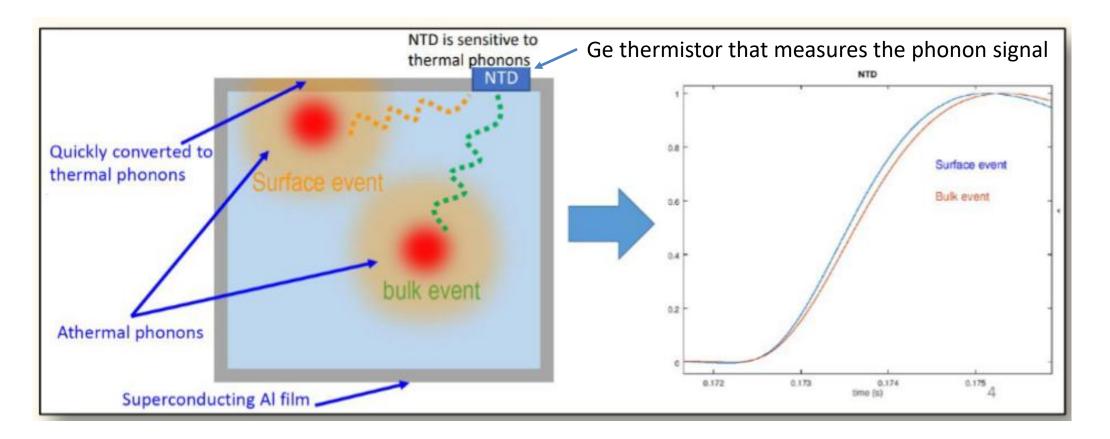
Basic approach

Bolometers made of enriched crystals : Li₂¹⁰⁰MoO₄ and ¹³⁰TeO₂

Measurement of heat and light from each event

Underground cryogenic facility at LSC (Canfranc, Spain)

Lead shielding, anti-radon shield and muon veto


What's new in CROSS?

Multi-year program to develop new technologies for background reduction and new radiopure enriched crystal production

- 1. Surface film coating of crystals to discriminate between bulk and surface events (both α 's and β 's)
- 2. Neganov-Trofimov-Luke (NTL) Light Detectors development and optimization
- 3. Novel mechanical structure that minimizes the amount of passive materials around the detectors
- 4. Purification-crystallization chain for enriched 130TeO2 crystals

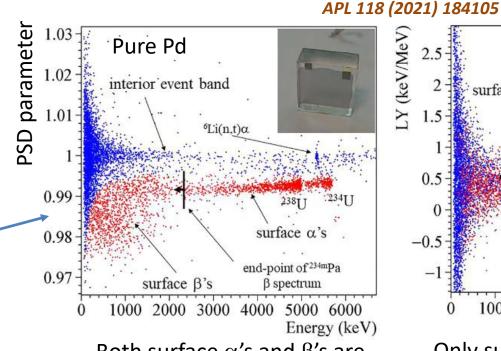
Bulk vs. surface event discrimination

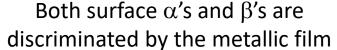
Reject surface events by Pulse Shape Discrimination assisted by metal film coating Metal films work as pulse-shape modifiers for charged particles that release energy close to the film → phonon and superconductivity physics
J. High Energ. Phys. 2020, 18 (2020)

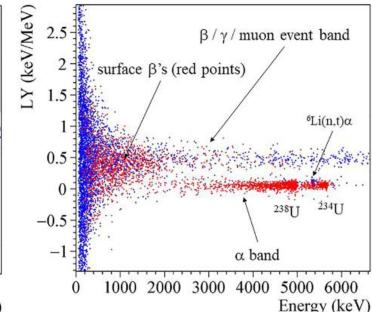
Bulk vs. surface event discrimination

After a long R&D with 2×2×1 cm to fix the best coating material, **AlPd bi-layer** was selected

H. Khalife PhD thesis


- Al is superconductive with T_C=1.2 K Pd is a normal metal
- Pd(10 nm) on the crystal Al(100 nm) on top of Pd \rightarrow T_c \sim 0.7 K (proximity effect)


Best compromise between:


- Efficient thermalization of surface events
- Low specific heat
- Easy deposition by evaporation

The sample is irradiated with an U source providing both α (4.2 and 4.7 MeV) and β (end-point at 2.2 MeV)

For redundancy, also scintillation light is detected

https://theses.hal.science/tel-03168547

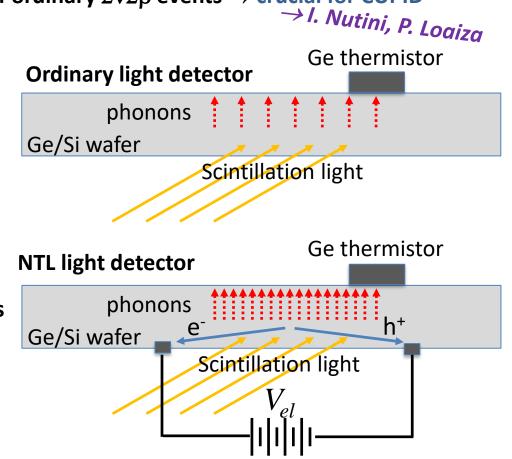
Only surface α 's are discriminated by a light-yield cut

Unfortunately, technology transfer to large CUPID- and CROSS-size crystals (4.5 × 4.5 × 4.5 cm³) failed so far

Enhanced-performance light detectors \rightarrow H. Khalife Poster #77

Light detectors are essential to **reject surface** α **background**

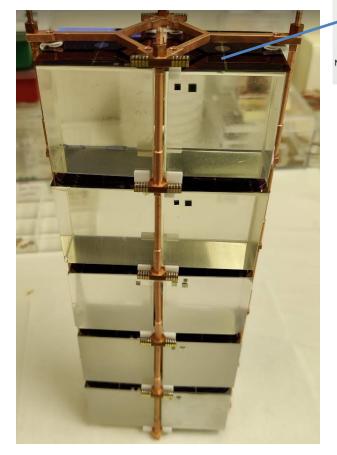
ightarrow In CROSS, light detector performance is enhanced by the Neganov-Trofimov-Luke effect (NTL)

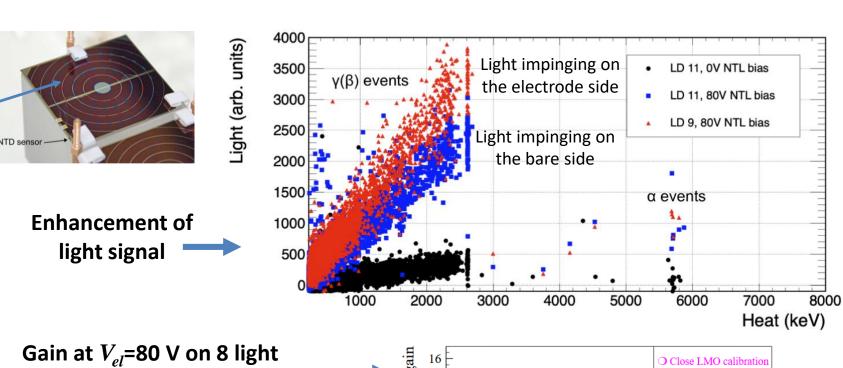

- Improve pile-up rejection
- Mitigation of background induced by random coincidences of ordinary $2\nu 2\beta$ events \rightarrow crucial for CUPID

NTL effect applied to light detectors NIMA 940, 320 (2019)

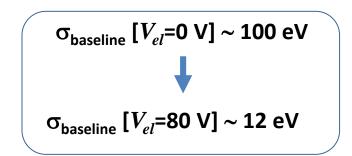
- Establish an electric field in the light detector wafer via a set of Al electrodes
- Electron-hole pairs created by scintillation light absorption drift in the field and produce additional heat
- An **amplification of the thermal signal** by a factor 10-20 is technically possible
- SNR is increased by an order of magnitude

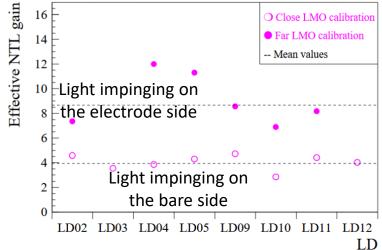
Amplified heat Initial heat Voltage at the electrodes


$$E_{tot} = E_0 \left(1 + \frac{q \cdot V_{el} \cdot \eta}{\epsilon} \right)$$


Enhanced-performance light detectors

NTL test in a CROSS prototype


10 scintillating bolometers

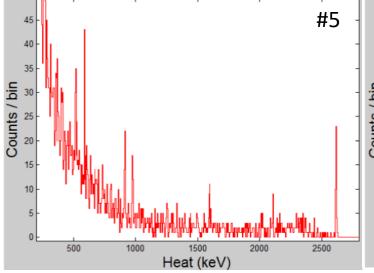


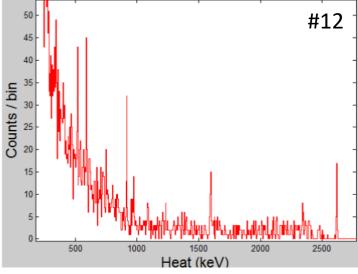
arXiv:2507.15732

detectors in parallel

Final facility validation

We routinely obtained 5-7 keV FWHM energy resolution @2615 keV in Li₂MoO₄ crystals in previous LSC runs


The facility in the final configuration was tested using two CUPID-Mo modules [two 210 g Li₂MoO₄ scintillating bolometers] Wiring, electronics, DAQ, suspension and all ancillary systems exactly as in the demonstrator ²³²Th calibration

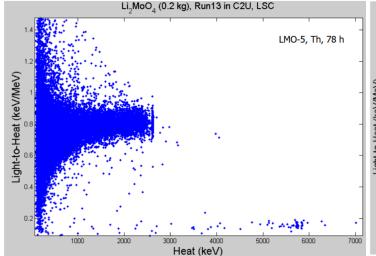


Crystal performance			
	Detector	FWHM @2615 keV (keV)	
CROSS	LMO-5	5.7(13)	
	LMO-12	5.2(11)	
CUPID-Mo	mean: 6.6 ± 0.1		

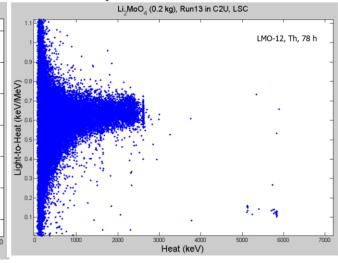
LDs performance					
	Detector	$\sigma_{baseline} \left(\mathrm{eV} \right)$			
CROSS	LD-5	64			
	LD-12	72			
CUPID-Mo	LD-5	66			
	LD-12	69			

Final facility validation

We routinely obtained 5-7 keV FWHM energy resolution @2615 keV in Li₂MoO₄ crystals in previous LSC runs


The facility in the final configuration was tested using **two CUPID-Mo modules** [two 210 g Li₂MoO₄ scintillating bolometers]

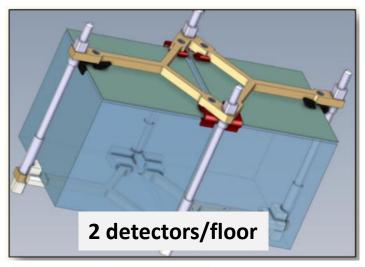
Wiring, electronics, DAQ, suspension and all systems exactly as in the demonstrator



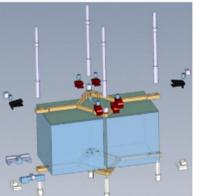
The performance of the CUPID-Mo modules are reproduced in the Canfranc facility

Crystal performance				
	Detector	FWHM @2615 keV (keV)		
CROSS	LMO-5	5.7(13)		
	LMO-12	5.2(11)		
CUPID-Mo	mean: 6.6 ± 0.1			

 α/β separation via LY plot

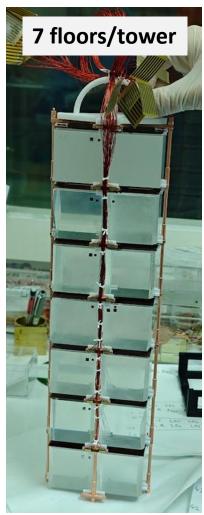

LDs performance					
	Detector	$\sigma_{baseline} ({ m eV})$			
CROSS	LD-5	64			
	LD-12	72			
CUPID-Mo	LD-5	66			
	LD-12	69			

CROSS demonstrator: structure

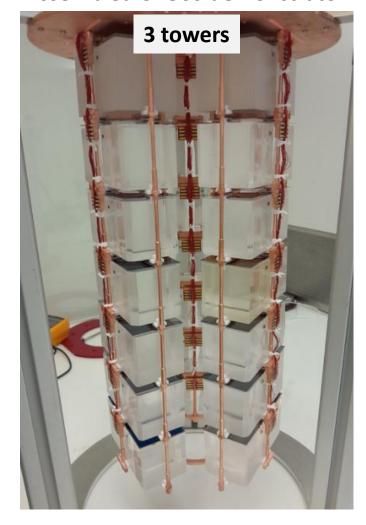

3 towers - 7 floors/tower - 2 detectors/floor

→ 42 crystals (45x45x45 mm) and light detectors (45x45 mm)

 $M[Li_2MoO_4] \sim 280 g$ $M [TeO_2] \sim 550 g$



No Cu holder for light detector wafer


Low (6%)
Cu/Li₂MoO₄
mass ratio

2024 JINST 19 P09013

M. Buchynska, WIN 2025

Assembled CROSS demonstrator

CROSS demonstrator: composition and status

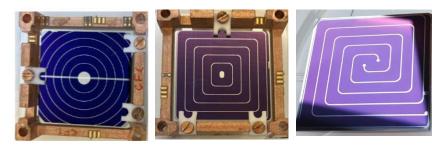
Molybdenum sector

■ 36x Li₂MoO₄ \rightarrow 32 ¹⁰⁰Mo-enriched (~97.5%), 2 ¹⁰⁰Mo-depleted (~0.01%), 2 naturals

Total mass of ¹⁰⁰Mo: 4.9 kg

NIIC, Novosibirsk, Russia *J. Mater. Sci. Eng. B* 2017, 7, 63 Superior quality and radiopurity, $< 1 \mu Bq/kg^{226}Ra$, ^{228}Th

Tellurium sector

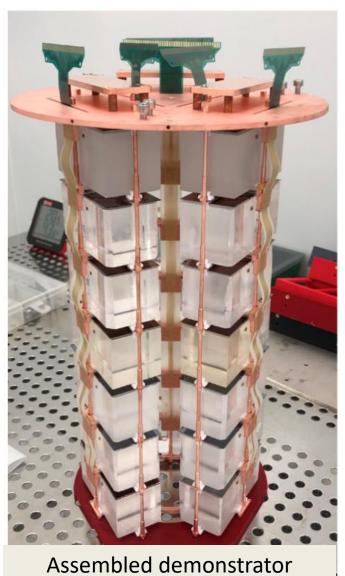

- 6x TeO₂ \rightarrow ¹³⁰Te-enriched (~91.4%)
- Total mass of ¹³⁰Te: 2.6 kg

5N, Canada (purification) – G&H, USA (crystallization) 2024 JINST 19 P09014 Excellent quality and radiopurity, < 10 μ Bq/kg 226 Ra, 228 Th

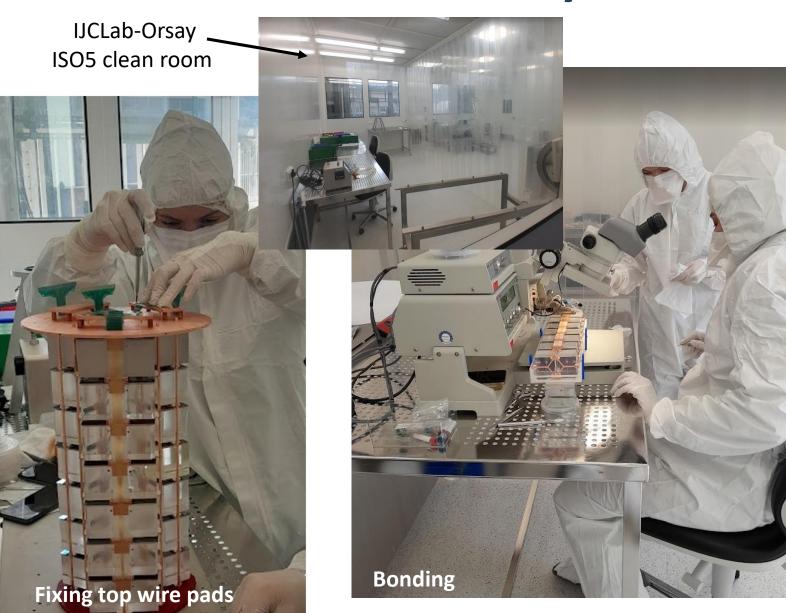
Test of different light detectors

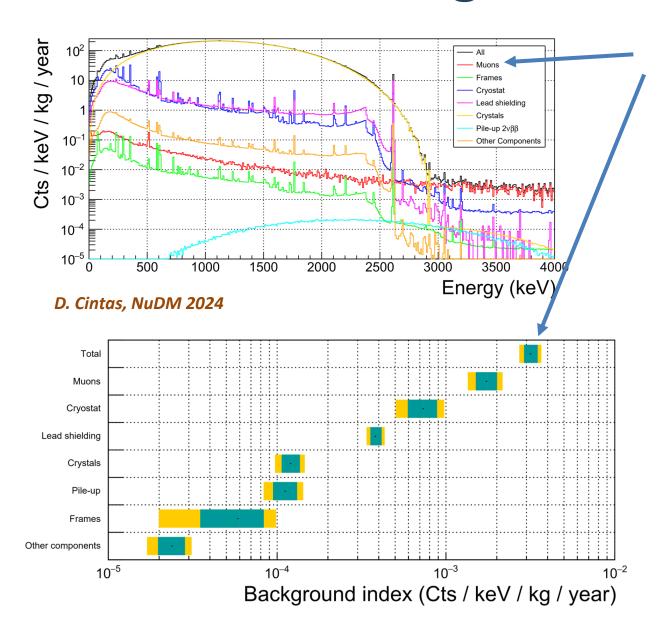
- Ge wafers with circular electrodes
- Ge wafers with square/spiral electrodes
- Si wafers with spiral electrodes

26 Ge detectors 16 Si detectors


Detectors now installed in the Canfranc underground laboratory

Cryostat ready to be cooled down


- Commissioning in September 2025
- Data taking to be started in October 2025


CROSS demonstrator: assembly

Assembled demonstrator (baseline version of the cabling)

Background simulation

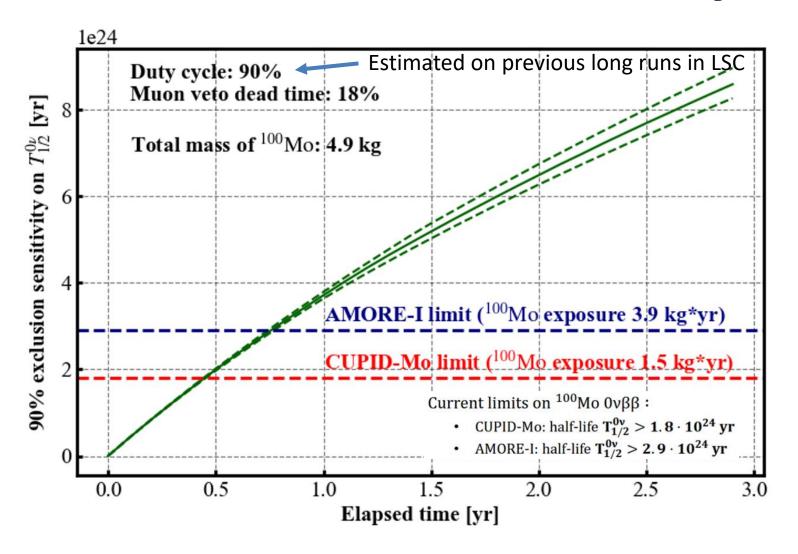
Dominant component: muons

Depth of LSC: 2450 mwe

Importance of the muon veto

Extruded scintillators Wavelength-shifter fibers SiPMs

174 channels grouped in 9 sectors


Rejection of events in coincidence between one veto sector and light detectors

Total veto rate: 80-90 Hz

Dead time: 18 %

Total BI: $(3.2\pm0.5)x10^{-3}$ counts/(keV kg y)

Sensitivity

Assumptions:

Resolution: **7 keV FWHM** @ **Q**ββ

ROI: 17.1 keV (from CUPID-Mo analysis)

BI: (3.2±0.5)x10⁻³ counts/(keV kg y)

Number of ¹⁰⁰Mo nuclei: 2.95x10²⁵

Efficiency 70.2%

- Containment efficiency: 78%
- Cut efficiency 90%

We expect to reach a sensitivity on 100 Mo $T^{0v}_{1/2}$ of 3.5x10²⁴ y before the end of 2026

Conclusions

- The CROSS multi-year program has enabled us to:
 - Investigate and develop new technologies for the reduction of radioactive background
 - In particular, the Neganov-Trofimov-Luke light detector technology is of crucial importance for CUPID
 - Acquire ultrapure crystals of Li₂MoO₄ and TeO₂ enriched in the relevant isotopes ¹⁰⁰Mo and ¹³⁰Te
 - Develop a fully equipped underground cryogenic facility (LSC) to host a pilot experiment (CROSS demonstrator) based on these technologies
 - Develop the electronics and the DAQ for this pilot experiment
- The CROSS demonstrator has now been assembled, installed at LSC, and is ready for data-taking, scheduled to begin in October 2025
- It has the potential to improve the current limit on $0\nu2\beta$ decay of ¹⁰⁰Mo before the end of 2026