Contribution ID: 309 Type: Oral

High-precision study of $2\nu\beta\beta$ of 130 Te from the CUORE experiment

Tuesday 26 August 2025 15:00 (20 minutes)

The two-neutrino double-beta decay $(2\nu\beta\beta)$ of 130 Te offers a unique window into its underlying nuclear structure and provides essential benchmarks for neutrinoless double-beta decay $(0\nu\beta\beta)$ searches. We present the most precise measurement to date of the $2\nu\beta\beta$ half-life of 130 Te from the CUORE experiment. The half-life, based on 1038 kg·yr TeO₂ exposure, is determined to be $T_2^{1/2} = (9.32^{+0.05}_{-0.04}(stat.)^{+0.07}_{-0.07}(syst.)) \cdot 10^{20}$ yr, marking a two-fold improvement in precision compared to previous measurements. Beyond refining the half-life measurement, this result leverages a 70% enhancement in signal-to-background ratio thereby enabling the first application of a spectral shape analysis using next-to-leading-order $2\nu\beta\beta$ formalism in 130 Te. This analysis extracts ratios of higher-order nuclear matrix elements—parameters that are notoriously challenging to probe experimentally. These results significantly advance double-beta decay physics, offering stringent constraints on nuclear models and enhancing the interpretive power of future $0\nu\beta\beta$ searches.

Collaboration you are representing

CUORE

Author: DELL'ORO, Stefano (University of Milano-Bicocca)

Co-authors: SCHMIDT, Benjamin (CEA IRFU/DPHP); SPEAKERSBOARD, CUORE

Presenter: DELL'ORO, Stefano (University of Milano-Bicocca)Session Classification: Neutrino Physics and Astrophysics

Track Classification: Neutrino Physics and Astrophysics