

Lensing signatures of selfinteracting dark matter halos:

an analytic approach

arXiv 2502,14964

JCAP 08 (2025) 048

OUTLINE

1. Why an Analytic Model for SIDM Lensing?

- Why an Analytic Model for SIDM Lensing?
 Generality
 Efficiency
- Robustness
- Discussion and Application

Sivuan Hou

SIDM halos: gravothermal evolution

- 2 Self-similar Collapse $\lambda \sim H$
- lacksquare Post Self-similar Collapse $\ \lambda < H$

Purple Mountain Observatory

Generality—the gravothermal phase

Why an Analytic Model for SIDM Lensing?

Efficiency-parametric SIDM model

OUTLINE

2. Robustness

- Why an Analytic Model for SIDM Lensing?
 - Robustness
 Isolated Halo
 Host halo + Subhalo
 - Discussion and Application

Siyuan Hou

A parametric model for SIDM Lensing

$$oxed{\Psi(R) = rac{2}{\Sigma_{
m cr}} \int_0^R s \Sigma(s) \ln \left(rac{R}{s}
ight) ds} - \hat{\Psi} \equiv rac{\Psi \Sigma_{
m cr}}{
ho_{s,0} r_{s,0}^3}, \quad \hat{\Sigma} \equiv rac{\Sigma}{
ho_{s,0} r_{s,0}^2}
ightarrow \hat{\Psi}(\hat{R}) = 2 \int_0^{\hat{R}} s \hat{\Sigma}(s) \ln \left(rac{\hat{R}}{s}
ight) ds}$$

Figure 3. The lensing model parameters a, b, c, p, and s as functions of $\, au$

Accruacy of the model

Robustness

Figure 4. Comparison of simulated (dotted) and model-predicted (solid).

Isolated Halo-Critical Curves and Caustics

Isolated Halo-Lens equation and Einstein radius

Robustness

Figure 7. Lensing equation of isolated spherical SIDM halos and Einstein Radial vs. Mass

Purple Mountain Observatory

Figure 8. Subhalo embed in the Main halo vs. distance

Siyuan Hou

Host halo + Subhalo-Critical Curves and Caustics vs. τ at fixed separation

Why an Analytic Model for SIDM Lensing?

OUTLINE

3. Discussion and **Application**

- Why an Analytic Model for SIDM Lensing?
 - Robustness
- Discussion and Application
 - Core collapsed halos
 - Impact of baryons
 - Two-components SIDM
 - Substructure in SIDM

Sivuan Hou

Core collapsed halos in the self-similar regime

Impact of baryons

Application in 2-component SIDM

Robustness

Accurate fits across CDM, SIDMx, and SIDM2v halos.

Robust results for a large population of cluster subhalos

Fast Lensing of Galaxy-Scale Substructure in SIDM

SUMMARY

CDM is challenged: GGSL, lensing substructure anomalies, ...

More substructure disturbances

Collapsed SIDM halos can produce more lensing effects

More GGSL

Possible existence of more compact subhalos

SIDM lacks an analytical lensing model

Thank you for Listening!

https://github.com/HouSiyuan2001/SIDM_Lensing_Model

2502.14964

Why we need time normalization?

Heat conduction breaks time reversal invariance

Arrow of time dependent on SIDM (the collision term)

$$rac{\partial}{\partial r}M=4\pi r^2
ho,$$

Dynamic pressure $rac{\partial}{\partial r}(
ho
u^2)=-rac{GM
ho}{r^2},$
 $rac{\partial}{\partial r}igg(r^2\kappa mrac{\partial
u^2}{\partial r}igg)=r^2
ho
u^2rac{D}{Dt}\lnrac{
u^3}{
ho}$

- Mass distribution
- Equilibrium condition
- Energy transport

SIDM effect can be absorb into t

arXiv 2305,16176

 $rac{\partial}{\partial r}igg(rac{r^2
ho_{DM}
u_{tot}^3}{G}rac{\partial
u_{tot}^2}{\partial r}igg)\propto r^2
ho_{tot}
u_{tot}^2rac{D}{D(t\sigma/m)}\lnrac{
u_{tot}^3}{
ho_{tot}}$

Why we choose fluid simulation?

Figure 2. Comparison of SIDM halo density profiles from simulations and model predictions at representative τ values.