Searching for Axionlike Particles with X-Ray Observations of Alpha Centauri

Yu-Xuan Chen[®], ^{1,2} Lei Lei[®], ^{1,2} Zi-Qing Xia, ¹ Ziwei Wang[®], ^{1,*} Yue-Lin Sming Tsai[®], ^{1,2,†} and Yi-Zhong Fan[®], ^{1,2,‡}

Z. Guo, Y. Tsai, L. Wu and Z. Xia,

Constraints on Axion-Like Particles from
16.5 Years of Fermi-LAT Data and

Prospects for VLAST, arXiv:2507.07786

Detecting Axion-like Particles: Long-Lived Particles and Dark Matter Yue-Lin Sming Tsai (Purple Mountain Observatory) Talk@TAUP2025 (2025.08.25)

If ALP is not DM, but long-lived particle, then...

Y. Chen, L. Lei, Z. Xia, Z. Wang, Y. Tsai and Y. Fan, Searching for Axionlike Particles with X-Ray
Observations of Alpha Centauri,

Phys. Roy Lett. 134, pp. 24, 241001 (2025)

Phys. Rev. Lett. 134, no.24, 241001 (2025)

Axion-like particle: a long-lived particle

2403.17697

the most senstive telescope!

Could we improve the result from the Sun?

However, the Sun is <u>too bright to be seen</u> in Chandra or other sensitive X-ray telescope!

TABLE I. The basic information of some nearby stars.

Name [†]	D* [pc]	M* [M _☉]	T* [K]	Age [Gyr]	_
Sun	4.85×10 ⁻⁶	1.00	5772	4.60	7.03 -
Proxima Centauri	1.30	0.12	2992	4.85	
Alpha Centauri A	1.33	1.08	5804	4.85	
Alpha Centauri B	1.33	0.91	5207	5.30	
Barnard's Star	1.83	0.16	3195	~ 10	
Wolf 359	2.41	0.11	2749	0.1 - 1.5	
Lalande 21185	2.55	0.39	3547	8.05	
Sirius A	2.64	2.06	9845	0.24	

[†] The stars we list have masses greater than 0.1 M_☉ and the furthest distance reaches up to Sirius A. The basic information of these nearest stars can be found in https://en.wikipedia.org/wiki/List_of_nearest_stars.

Closer? (Not possible)

> Hotter? Heavier? Older?

^{*} D is the distance from the Earth to the star.

M is the star's mass.

^{*} T is the star's effective temperature.

eROSITA and Chandra X-ray telescope

• eROSITA

- wide-field X-ray telescope onboard.
- Hardly distinguish X-ray from alpha-Centauri A and B.
- Photon energy range between 0.2 kev to 8 keV.

Chandra

- Higher spatial resolution.
- Photon energy range between 0.1 keV to 3 keV.

ALP production and capture

$$\mathcal{L} = \frac{1}{2} \partial^{\mu} a \partial_{\mu} a - \frac{1}{2} m_a^2 a^2 - \frac{1}{4} g_{a\gamma\gamma} a F^{\mu\nu} \widetilde{F}_{\mu\nu} - \frac{1}{2} g_{aee} a \bar{\psi} \gamma^5 \psi$$

$$\Gamma^{\text{Primakoff}} \simeq \frac{g_{a\gamma\gamma}^2 T \kappa^2}{32\pi^2} \left[\frac{8p^2}{3(\kappa^2 + m_a^2)} + O(p^4) \right].$$

ALP production and capture

 E_{γ} (keV)

While we detect some excesses of emission lines, none reaches 50 significance. The line with the most significant deviation (TS[without line]- TS[with line] = 22.4) locates at 0.2142 keV, corresponding to a 4.30 significance based on a Chi-squared distribution with 2 degrees of freedom.

Results

Our limits on $g_{\alpha\gamma\gamma}$ extend to ALP masses as low as 0.16 keV, benefiting from the lower X-ray energy threshold of Chandra and eROSITA.

Uncertainties

Sources: stellar parameters, mixing length, the Schwarzschild and Ledoux criteria, and convective overshooting. It is at most 12%.

If ALP can be DM

Z. Guo, Y. Tsai, L. Wu and Z. Xia, Constraints on Axion-Like Particles from 16.5 Years of Fermi-LAT Data and Prospects for VLAST, arXiv:2507.07786

ALP can be both a LLP and DM

There is no "DM detection", so ALPs in this mass range could be either long-lived particles or dark matter.

Giant elliptical galaxy: NGC 1275

Property	Details				
Object Type	Active Galaxy (AGN), Seyfert 2 Galaxy				
Redshift (z)	0.0176	* 18 m			
Distance from Earth	70.7 Mpc				
Galactic Coordinates	I = 144.4°, b = -10.7°				
Host Galaxy	Perseus Cluster (NGC 1275 is the central galaxy of the Perseus cluster)				
Core Activity	Strong AGN, radio emission, X-ray emissions, and possible central black hole				
X-ray Luminosity	~10 ²⁴ erg/s (from central region)				
Radio Emission	Strong radio source, part of the Perseus cluster's radio halo				
Supermassive Black Hole Mass	~3.5 × 10 ⁹ M _{sol} (solar masses)				
Radius (Galaxy)	~30 kpc (kiloparsecs)				
Average Magnetic Field	${\sim}10~\mu\text{G}$ (microgauss) at the center of the cluster				
Mass (Galaxy)	~2 × 10 ¹² M _{sol} (solar masses)				

- NGC 1275 is highly gamma-ray bright, with Fermi-LAT significance >100 sigma.
- Its broadband spectrum follows the synchrotron self-Compton model.
- Located in the Perseus cluster, it offers precise magnetic field constraints via rotation measures.

B_T is more or less understood

PHOTON-ALP OSCILLATION

 E_c is an important quantity to determe oscillation. When $m_a >> \omega_{pl}$, E_c is no longer sensitive to ω_{pl} .

$$1 - P_{\gamma \to a} = 1 - \frac{1}{1 + \left(E_c/E_\gamma\right)^2} \sin^2\left[\frac{g_{a\gamma}B_{\rm T}l}{2}\sqrt{1 + \left(\frac{E_c}{E_\gamma}\right)^2}\right]$$

where $\omega_{\rm pl}$ is the plasma frequency:

$$\omega_{\rm pl} = \sqrt{4\pi\alpha n_e/m_e}$$

ALP-induced gamma-ray spectrum

$$\left(\frac{\mathrm{d}N}{\mathrm{d}E}\right)_{\mathrm{w/oALPs}} = N_0 \left(\frac{E}{E_b}\right)^{-\left[\alpha + \beta \ln\left(E/E_b\right)\right]},\tag{8}$$

where N_0 is the normalization constant, α is the spectral index, β is the curvature parameter, and E_b is the scale parameter, typically fixed to the characteristic energy value near the low-energy region of the fitted spectrum. In this study, it is set to 0.9578 GeV.

Incorporating the photon-ALP oscillation effect, the intrinsic spectrum is multiplied by the photon survival probability to obtain the oscillatory spectrum for the alternative hypothesis (labeled as wALPs):

$$\left(\frac{\mathrm{d}N}{\mathrm{d}E}\right)_{\mathrm{wALPs}} = P\left(g_{a\gamma}, m_a, E\right) \left(\frac{\mathrm{d}N}{\mathrm{d}E}\right)_{\mathrm{w/oALPs}}.$$
 (9)

Free parameters to fit data are: $\{\alpha, \beta, N_0\}$ for background and $\{g_{\alpha\gamma}, m_a\}$ for ALP.

VLAST-closing the MeV gap

- Very Large Area gamma-ray Space Telescope (VLAST), the successor of DAMPE
- ➤ The first 10 m² sr level gamma-ray satellite (~20 tons)
- Leading the research on dark matter detection and time-domain astronomy based on MeV - TeV gamma-rays

VLAST prospect

Fermi NGC 1275+Quasars totally cover TeV transparency region. VLAST will probe $g_{\alpha\gamma} \sim 10^{-12}$ at $m_{\alpha} \sim 10^{-10}$ region.

Uncertainties

Neither EBL nor GMF affects our result significantly.

Summary (1) long-lived ALP

- Gravitationally trapped in the orbits of stars and subsequently decay into two photons -> monochromatic line spectra -> best senstivities.
- · New target (Alpha Centauri) for observation instead of the Sun.
- Use of sensitive X-ray detectors like Chandra and eROSITA.
- Most strigent limits are given even in a conservative setup.
- Theoretical uncertainties are studied.

Summary (2) ALP dark matter

• Our study tightens constraints on ALPs for masses ~10-9 and 10^{-7} eV and couplings around 10^{-11} and 10^{-10} GeV⁻¹.

• Our results exclude previously viable regions ("holes") in ALP parameter space.

• Simulated result indicate that VLAST could further enhance sensitivity—especially extending reach to slightly heavier ALPs or weaker couplings.

Thank you for listening!

ALP production and capture

$$\mathcal{L} = \frac{1}{2} \partial^{\mu} a \partial_{\mu} a - \frac{1}{2} m_a^2 a^2 - \frac{1}{4} g_{a\gamma\gamma} a F^{\mu\nu} \widetilde{F}_{\mu\nu} - \frac{1}{2} g_{aee} a \bar{\psi} \gamma^5 \psi$$

$$\Gamma^{\text{Primakoff}} \simeq \frac{g_{a\gamma\gamma}^2 T \kappa^2}{32\pi^2} \left[\frac{8p^2}{3(\kappa^2 + m_a^2)} + O(p^4) \right].$$

 $\Phi_{E,\gamma}(t) = \frac{1}{4\pi D^2} \int_{R} dr \cdot 4\pi r^2 n_a^{\text{orb}}(t) \Gamma_{a\gamma\gamma},$

$$|\mathcal{M}|^2 \propto g_{a\gamma\gamma}^2$$

- Primakoff process has never be the dominant, because p^2 .
- Photon coalescence is only important when g_{aee}^2 is suppressed.

$$\Gamma^{\text{coal.}}(T) = \Gamma_{a\gamma\gamma} \frac{m_a^2 - 4\omega_p^2}{m_a^2} \left(\frac{m_a}{E_a}\right) \left[1 + \frac{2T}{p} \ln \frac{1 - e^{-(E_a + p)/2T}}{1 - e^{-(E_a - p)/2T}}\right]$$

$|\mathcal{M}|^2 \propto g_{aee}^2$

- Bremsstrahlung is important for ALP mass less than 10 keV when g_{aee}^2 is NOT suppressed.
- Compton dominant the region where the ALP mass greater than 10 keV.

$$\Gamma^{\text{Comp.}} \simeq \alpha g_{aee}^2 n_e \frac{m_a}{m_e^4} \sqrt{m_a^2 - \omega_p^2}.$$

Constraints from 16.5 Years of Fermi-LAT Data No hole Monte Carlo Simulation now 2500 simulations NGC1275 (Fermi-LAT) 10^{-10} $\Delta \chi_{\text{thr}}^2 = 9.28$ 250 200 $g_{a\gamma} \, (\mathrm{GeV}^{-1})$ Counts 150 Does not follow a chi-squared 100 distribution. 50 m_a (eV) 2008-2014 20 $\chi^2_{\text{w/oALPs}} - \chi^2_{\text{wALPs}}$ 10^{-8} 10^{-7}

We perform a Monte Carlo simulation to include 100 random realizations of Gaussian turbulent magnetic fields.

 m_a (eV)

PHOTON-ALP OSCILLATION

Clearly, the detectable mass range (oscillation signature) is more sensitive to $E_{\rm c}$ than to the detectors' energy upper limits.

Photon surviving probabilities

$$1 - P_{\gamma \to a} = 1 - \frac{1}{1 + \left(E_c/E_{\gamma}\right)^2} \sin^2 \left[\frac{g_{a\gamma}B_{\rm T}l}{2} \sqrt{1 + \left(\frac{E_c}{E_{\gamma}}\right)^2}\right], (2)$$

- $\mathbf{E}_{\gamma} \ll \mathbf{E}_{\mathbf{c}}$: the photon-ALP oscillation is weak, with a low conversion probability, and the photon survival probability is close to 1.
- $\mathbf{E}_{\gamma} \sim \mathbf{E}_{\mathbf{c}}$: photons and ALPs undergo strong mutual conversion, leading to obvious oscillation.
- $\mathbf{E}_{\gamma} \gg \mathbf{E}_{\mathbf{c}}$: the conversion probability is still large, however, the photon survival probability in Equation (2) mildly varies with E_{γ} and becomes gradual.