Insights into Fundamental Physics from Cosmological Gravitational Wave Sources

Speaker: Jing Liu

International Centre for Theoretical Physics Asia Pacific, University of Chinese Academy of Science

Based on: Jing Liu, Ligong Bian, Zong-Kuan Guo, Rong-Gen Cai, Shao-Jiang Wang, Phys.Rev.Lett. 126 (2021) 14, 141303

Jing Liu, Phys.Rev.D 108 (2023) 12, 123544

Chengjie Fu, Jing Liu, 2506.14366

Zhen-Min Zeng, Jing Liu, Zong-Kuan Guo, Phys. Rev D 108 (2023) 6, 063005

Contents

- 1. The origin
- 2. Mechanisms for producing observable GWs
- 4. Induced density perturbations and observables

Cosmological Sources

Compact Binaries

Common features

- 1. Stochastic continuous and approximately isotropic GW background
- 2. Generally speaking, in the early Universe
- 3. Motivated by new physics

GW sources within **GR**

Curvature perturbations

first-order phase transition

domain wall

Prop-Backgrounds **Events/Continuous Others** agation **Binary BHs/neutron stars** Astrophysical From the **EoS** of neutron stars **Echoes** earth? Primordial black holes SMBH evolution Thermal Other Superradiance Halos history **Polarization** DM profile in the center Boson stars modes Graviton New model of the Universe mass DM interaction Inflation Quantum with observers fluctuations L Bounce ··· Chern-(interferometers) First-order phase transitions **Simons Oscillations** couplings **Cosmic strings Primordial curvature** of ultralight perturbations Sources-DM (PTAs) **Cosmic strings DM** minihalos **Domain walls** (PTAs) **Condensate fragmentation GWs in GR**

The origin

Curvature perturbations

Condensate fragmentation

first-order phase transition

cosmic string

domain wall

- > Inflation
- Induced after inflation

End of Inflation

Spectators after inflation

- After Inflation
- During inflation

- > After inflation
- Induced by fluctuations during inflation or diluted by inflation

Inflation

- 1. Quantum fluctuations during inflation
- 2. The dynamics of inflaton or spectators during inflation

Phase transitions

- 1. Direct production of GWs during firstorder phase transitions
- 2. GWs from topological defects as the consequence of phase transitions

Cosmological

Astrophysical

Naturally horizon scale

Parameter dependent: 1.resonance band

2.PT speed

3.string interval

Observations

Direct

LIGO and PTA at present, LVK for constraints and PTA for interpretations

CE/ET, LISA/Taiji/Tianqin, DECIGO/BBO, SKA, μ-era, high-frequency detectors…

Indirect binaries, astrometry, magnetic fields, primordial black holes, BBN, Neff

Associated observables

- > Anisotropies
- > Primordial black holes,
- > Particle dark matter models,
- > Curvature perturbations,
- Primordial magnetic fields,
- > Background evolution,
- ➤ Baryon asymmetry, and so on…

- **▶** Dark matter
- > Hubble tension
- **➤** Baryon asymmetry
- **►** Intergalactic magnetic fields
- > The seed of supermassive black holes

Ockham's razor

Mutual verification/constraints

In the FLRW Universe

Vacuum energy ~ constant Radiation ~ a^{-4} Cold matter ~ a^{-3}

Region 1

Region 2

Faster

The speed of vacuum decay

Slower

Lower Energy density after the FOPT

Higher

 $\delta \rho / \rho$ reaches the maximum when false vacuum completely decay inside

Vacuum energy decays into radiation and relativistic bubble walls

Constraints on PT parameters

Jing Liu, Ligong Bian, Zong-Kuan Guo, Rong-Gen Cai, Shao-Jiang Wang, Phys.Rev.Lett. 126 (2021) 14, 141303

$$\delta_H \equiv \sqrt{(\delta \rho (H_*^{-1})/\rho)^2} \propto \alpha (\beta/H_*)^{-5/2}$$

More strict for low-scale and slow FOPTs

What if dark matter are produced from an FOPT?

Numerical simulations from Prof. Ligong Bian

Zou, Jintao and Zhu, Zhiqing and Zhao, Zizhuo and Bian, Ligong, 2502.20166

FIG. 2: Evolution diagram of $\delta_H(t) = \int \frac{dk}{k} \mathcal{P}_{\delta}(t)$ during FOPT process. The panels are arranged in a 2 × 2 grid: $\alpha = 0.5$ (top-left), $\alpha = 1$ (top-right), $\alpha = 5$ (bottom-left), and $\alpha = 10$ (bottom-right). The contribution from smaller scales $(kR^* > 1.3)$ has been droped.

FIG. 3: For $\beta/H = 6, 8, 10, 12$, the left panel shows δ_H at the first peak $t/R^* = 0.5$, while the right panel presents δ_H at the second peak $t/R^* = 1.2$.

The second peak comes from the energy flow.

An FOPT that only affect the coupling...

 $V_{\rm int} \sim \chi \phi \psi \psi$

Xiao-Bin Sui, Jing Liu, Rong-Gen Cai, 2509.xxxxx

$$\frac{d\left(\rho_r a^4\right)}{dt} = \Gamma \rho_{m2} a^4$$

$$\frac{d\left(\rho_{m2}a^{3}\right)}{dt} = -\frac{d\left(\rho_{m1}a^{3}\right)}{dt} - \Gamma\rho_{m2}a^{3}$$

$$\frac{d\left(\rho_{r}a^{4}\right)}{dt} = \Gamma\rho_{m2}a^{4}$$

Generate strong density perturbations and scalar-induced GWs with very weak FOPT

Curvature perturbations induced by Poisson distributions

Zhen-Min Zeng, Jing Liu, Zong-Kuan Guo, Phys. Rev. D 108 (2023) 6, 063005

The formation processes are independent of each other

primordial black holes, Q-balls, oscillons, spherical domain walls and cosmic strings...

$$\mathcal{P}_{\mathcal{R}}(k) \propto k^3$$

Razieh Emami, George Smoot, JCAP 01 (2018) 007

CMB anisotropies
CMB spectral distortions
Big-Bang nucleosynthesis
Primordial black holes
Ultracompact minihalos

Power of PTA experiments to constrain nanohertz GW sources

The formation of compact dark matter halos

Power of PTA experiments to constrain nanohertz GW sources

Delos, M. Sten and Erickcek, Adrienne L. and Bailey, Avery P. and Alvarez, Marcelo A.,1712.05421

Harikrishnan Ramani et al JCAP12(2020)033

Mass function

$$P_0 = \min\left(\frac{M_0}{M_i} \frac{1}{\sqrt{2\pi}\delta_H} \int_{\delta_{min}}^{+\infty} d\delta \, \exp\left(\frac{-\delta^2}{2\delta_H^2}\right), 1\right)$$

$$M_i = \frac{4}{3}\pi(a_*H_*)^{-3}\rho_{DM,0}$$
 $\delta_{min} \sim 0.001$

This result is valid for all of the cold DM models and does not rely on the decay products of DM.

Note that some of the fuzzy/warm dark matter models do NOT apply to this result.

The GW observations in turn give constraints to DM models?

Distinguishing nanohertz gravitational wave sources through the observations of ultracompact minihalos

Jing Liu, Phys.Rev.D 108 (2023) 12, 123544

Observations of ultracompact minihalos can help to distinguish the GW sources.

Constraining SGWBs below the astrophysical foregrounds

Chengjie Fu, Jing Liu, 2505.14366

Irreducible astrophysical foreground

Bubble collisions

Sound waves

Domain walls

Condensate fragmentation

Summary

- 1. The origin
 - During/after inflation, or thermal history
- 2. Mechanisms for producing observable GWs
 Large amplitude and large scales
- 4. Associated observables
 - Anisotropies, Primordial black holes, curvature perturbations primordial magnetic fields, baryon asymmetry, and so on...
- 5. Corresponding techniques
 - Numerical simulation and (semi)analytic methods

