

XIX International Conference on Topics in Astroparticle and Underground Physics

Physics potential of detecting solar neutrinos at JUNO

Marco Beretta on behalf of the JUNO collaboration

Solar neutrinos are produced in the Sun through the reactions:

$$4p
ightarrow lpha + 2e^+ + 2
u_e$$

Neutrinos interact through the weak-interaction only:

$$\sigma \sim 10^{-44}\,\mathrm{cm}^2 \ @\ 1\,\mathrm{MeV}$$

Photons take about 100 000 years to reach our star surface. Instead, neutrinos only take about 8 minutes to travel from their production site to the Earth.

Solar neutrinos were historically important for particle physics:

→ Solving the "solar neutrino deficit" introduce **neutrino oscillation** and neutrino masses in particle physics

Two important roles:

- → probe for Sun properties: solar model, luminosity, metallicity problem, etc.
- → **Well known neutrino source**: neutrino oscillation, matter effect, NSI

Produced in the two primary nuclear fusion processes in the Sun

The energy range extends from fraction of MeV to ~10 MeV

The Central Detector of the JUNO experiment is a gigantic sphere of 40 m of diameter which support all the parts of the detector:

The Central Detector of the JUNO experiment is a gigantic sphere of 40 m of diameter which support all the parts of the detector:

→ More then 42000 Photo-Multiplier Tubes divided in two systems (20" and 3"), reaching 78% optical coverage

The Central Detector of the JUNO experiment is a gigantic sphere of 40 m of diameter which support all the parts of the detector:

- → More then 42000 Photo-Multiplier Tubes divided in two systems (20" and 3"), reaching 78% optical coverage
- → An acrylic sphere ~ 35.4 m of diameter needed to contain the liquid scintillator
- → 20 000 tons of an organic liquid scintillator: LAB + 2.5 g/l PPO + 3 mg/l bis-MSB

The Central Detector of the JUNO experiment is a gigantic sphere of 40 m of diameter which support all the parts of the detector:

- → More then 42000 Photo-Multiplier Tubes divided in two systems (20" and 3"), reaching 78% optical coverage
- → An acrylic sphere ~ 35.4 m of diameter needed to contain the liquid scintillator
- → 20 000 tons of an organic liquid scintillator: LAB + 2.5 g/l PPO + 3 mg/l bis-MSB

All submerged in ultra-pure water and cover by a plastic scintillator tracker for muon veto

JUNO detector: physics

The main goal is the determiation of the neutrino mass ordering by detecting antineutrinos from 2 NPP at 52.5 km away

The expected sensitivity is ~ 3 sigma in 6 years of data taking having ~3 % of energy resolution at 1 MeV

JUNO detector: physics

The main goal is the determiation of the neutrino mass ordering by detecting antineutrinos from 2 NPP at 52.5 km away

The expected sensitivity is ~ 3 sigma in 6 years of data taking having ~3 % of energy resolution at 1 MeV

Thanks to its huge mass and the good internal radiopurity it will be a great detector for natural source physics:

- _ Geoneutrinos
- _ Supernova
- _ Atmospheric
- _ Solar

Low energy:

- 0.2 0.4 MeV
- mostly *pp*

Main backgrounds:

- 14C and pile-up
- 85Kr
- 238U and 232Th chains

Intermediate energy:

- 0.4 2.0 MeV
- 7Be, pep, CNO

Main backgrounds:

- 85Kr
- 238U and 232Th chains
- 210Po 210Bi
- **210Pb** chain
- **11C** (cosmogenic)

The main interaction channel is elastic scattering the electrons of the medium:

$$u_x + e^-
ightarrow
u_x + e^-$$

Backgrounds control is one of the key challenge for measure intermediate energy which mimics neutrino signal

Intermediate energy: Cosmogenic backgrounds

Using a technique called Three-Fold Coincidence (TFC) it is possible to tag the production of a 11C isotope in a cylindrical volume along the track of the particle.

This allows to identify about 90% of the 11C events reducing this background

Intermediate energy: Internal backgrounds

Five purification plants to produce and purify the liquid scintillator going into JUNO Plus a continuos control in production and cleanness of each part of the detector

Intermediate energy: Internal backgrounds

Five purification plants to produce and purify the liquid scintillator going into JUNO Plus a continuos control in production and cleanness of each part of the detector

The main interaction channel is elastic scattering the electrons of the medium:

$$u_x + e^-
ightarrow
u_x + e^-$$

Backgrounds control is one of the key challenge for measure intermediate energy which mimics neutrino signal

We evaluated three different radiopurity scenarios:

Borexino-like	~10 ⁻¹⁹ g/g (U/Th)
Ideal	10 ⁻¹⁷ g/g (U/Th)
Baseline	10 ⁻¹⁶ g/g (U/Th)
Minimal (IBD)	10 ⁻¹⁵ g/g (U/Th)

The main interaction channel is elastic scattering the electrons of the medium:

$$u_x + e^-
ightarrow
u_x + e^-$$

Backgrounds control is one of the key challenge for measure intermediate energy which mimics neutrino signal

We evaluated three different radiopurity scenarios:

Borexino-like	~10 ⁻¹⁹ g/g (U/Th)	
Ideal	10 ⁻¹⁷ g/g (U/Th)	
Baseline	10 ⁻¹⁶ g/g (U/Th)	
Minimal (IBD)	10 ⁻¹⁵ g/g (U/Th)	

As it has been done by the Borexino collaboration, using a **Monte Carlo based fitter** it is possible to separate all the contributions in this energy spectrum

We need to have a very robust Monte Carlo tune on calibration data

From this fit, we extracted relative uncertainty on **solar neutrino rates in the four radiopurity scenarios** in function of the acquisition time

10^-16 g/g scenario

Improve current measurements: (with bkg $\leq 10^{-16}$ g/g)

• pep and 7Be better than Borexino in ~2y

TAUP 2025

Improve current measurements: (with bkg ≤ 10^-16 g/g)

- pep and 7Be better than Borexino in ~2y
- CNO better than Borexino in ~6y (with no constraint on 210Bi)

marco.beretta@mi.infn.it

TAUP 2025

High energy:

- > 3 MeV
- mostly 8B (hep)

Main backgrounds:

- Cosmogenics
- External
- Accidental for (CC)

High energy: 8B

JUNO can detect **8B solar neutrinos** by looking to different interaction channels:

ES:
$$v_x + e^- \rightarrow v_x + e^-$$

- No threshold
- All flavours & $\sigma(v_{u,\tau})$ / $\sigma(v_e)$ = 1/6
- Single events continuous spectrum

CC:
$$v_e + {}^{13}C \rightarrow e^- + {}^{13}N$$

- E_{thr} = 2.2 MeV
- Possible only with $v_{\rm p}$
- Prompt: e⁻; Delayed: ¹³N decay

NC:
$$v_x + {}^{13}C \rightarrow v_x + {}^{13}C^*$$

- $E_{thr} = 3.685 \text{ MeV}$
- All flavors & equal σ
- Single events monochromatic y

High energy: 8B

• ES:
$$v_x + e^- \rightarrow v_x + e^-$$
, with $x = e, \mu, \tau$

- \circ no energy threshold
- o **continuous** energy spectrum
- o all flavors with $\sigma(v_{\mu,\tau}) / \sigma(v_e) = 1/6$

- CC: $v_e + {}^{13}C \rightarrow e^- + {}^{13}N$
 - o threshold of 2.2 MeV
 - o prompt-delayed coincidence
 - \circ only ν_e

- o threshold of 3.685 MeV
- mono-energetic gamma
- o all flavors

High energy: 8B

CC & ES: their event rate depends on the **neutrino flux** and on the v **survival probability NC**: it will allow a model **independent measurement of** $\Phi(^8B)$, first after SNO

Simultaneous measurement of $\Phi(^8B), \, \Delta m^2_{21}, sin^2(\theta_{12})$

Conclusions

JUNO will perform important solar neutrino measurements, such as:

- 8B flux with 5% precision after 10 years
- Solar **oscillation parameters** independently from reactor
- 7Be and pep fluxes better than Borexino in few years
- CNO flux solar for metallicity problem

JUNO data taking is going to start

Current level of radiopurity is < 10⁻¹⁶ g/g U/Th

The main interaction channel is elastic scattering the electrons of the medium:

$$u_x + e^-
ightarrow
u_x + e^-$$

Backgrounds control is one of the key challenge for measure intermediate energy which mimics neutrino signal

We evaluated three different radiopurity scenarios:

	U [g/g]	Th $[g/g]$	K [g/g]	Kr [g/g]
IBD	1×10^{-15}	1×10^{-15}	1×10^{-16}	4×10^{-24}
Baseline	1×10^{-16}	1×10^{-16}	1×10^{-17}	4×10^{-25}
Ideal	1×10^{-17}	1×10^{-17}	1×10^{-18}	8×10^{-26}
BX-like	5.7×10^{-19}	9.4×10^{-20}	2×10^{-19}	8×10^{-26}

Intermediate energy: solar metallicity

	Solar ν	$^7\mathrm{Be}$	pep	CNO
HZ- SSM	$\Phi [10^8 \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	49.3(1±0.06)	$1.44(1\pm 0.009)$	$4.88(1 \pm 0.11)$
	$R [\mathrm{cpd/kton}]$	489 ± 29	28.0 ± 0.4	50.3 ± 8.0
	$R^{ m ROI}$ [cpd/kton]	142.5 ± 8.3	17.1 ± 0.2	16.6 ± 2.6
LZ- SSM	$\Phi [10^8 \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	45.0(1±0.06)	$1.46(1\pm 0.009)$	$3.51(1 \pm 0.10)$
	R [cpd/kton]	447 ± 26	28.4 ± 0.4	36.0 ± 5.3
	$R^{ m ROI}$ [cpd/kton]	130.0 ± 7.5	17.3 ± 0.2	11.9 ± 1.8

Intermediate energy: solar metallicity

Global analysis of solar v fluxes

- General agreement with SSM-HZ scenario
- Binary hypothesis test: HZ vs LZ

Assuming SSM-HZ, Borexino results on ${}^{7}\text{Be-}\nu + {}^{8}\text{B-}\nu + \text{CNO-}\nu,$

the SSM-LZ scenario is disfavored at ~3.1σ level

PRL 129 (2022) 252701

"Improved Measurement of Solar