XIX International Conference on Topics in Astroparticle and Underground Physics # Physics potential of detecting solar neutrinos at JUNO Marco Beretta on behalf of the JUNO collaboration Solar neutrinos are produced in the Sun through the reactions: $$4p ightarrow lpha + 2e^+ + 2 u_e$$ Neutrinos interact through the weak-interaction only: $$\sigma \sim 10^{-44}\,\mathrm{cm}^2 \ @\ 1\,\mathrm{MeV}$$ Photons take about 100 000 years to reach our star surface. Instead, neutrinos only take about 8 minutes to travel from their production site to the Earth. Solar neutrinos were historically important for particle physics: → Solving the "solar neutrino deficit" introduce **neutrino oscillation** and neutrino masses in particle physics Two important roles: - → probe for Sun properties: solar model, luminosity, metallicity problem, etc. - → **Well known neutrino source**: neutrino oscillation, matter effect, NSI Produced in the two primary nuclear fusion processes in the Sun The energy range extends from fraction of MeV to ~10 MeV The Central Detector of the JUNO experiment is a gigantic sphere of 40 m of diameter which support all the parts of the detector: The Central Detector of the JUNO experiment is a gigantic sphere of 40 m of diameter which support all the parts of the detector: → More then 42000 Photo-Multiplier Tubes divided in two systems (20" and 3"), reaching 78% optical coverage The Central Detector of the JUNO experiment is a gigantic sphere of 40 m of diameter which support all the parts of the detector: - → More then 42000 Photo-Multiplier Tubes divided in two systems (20" and 3"), reaching 78% optical coverage - → An acrylic sphere ~ 35.4 m of diameter needed to contain the liquid scintillator - → 20 000 tons of an organic liquid scintillator: LAB + 2.5 g/l PPO + 3 mg/l bis-MSB The Central Detector of the JUNO experiment is a gigantic sphere of 40 m of diameter which support all the parts of the detector: - → More then 42000 Photo-Multiplier Tubes divided in two systems (20" and 3"), reaching 78% optical coverage - → An acrylic sphere ~ 35.4 m of diameter needed to contain the liquid scintillator - → 20 000 tons of an organic liquid scintillator: LAB + 2.5 g/l PPO + 3 mg/l bis-MSB All submerged in ultra-pure water and cover by a plastic scintillator tracker for muon veto # JUNO detector: physics The main goal is the determiation of the neutrino mass ordering by detecting antineutrinos from 2 NPP at 52.5 km away The expected sensitivity is ~ 3 sigma in 6 years of data taking having ~3 % of energy resolution at 1 MeV ### JUNO detector: physics The main goal is the determiation of the neutrino mass ordering by detecting antineutrinos from 2 NPP at 52.5 km away The expected sensitivity is ~ 3 sigma in 6 years of data taking having ~3 % of energy resolution at 1 MeV Thanks to its huge mass and the good internal radiopurity it will be a great detector for natural source physics: - _ Geoneutrinos - _ Supernova - _ Atmospheric - _ Solar #### Low energy: - 0.2 0.4 MeV - mostly *pp* #### Main backgrounds: - 14C and pile-up - 85Kr - 238U and 232Th chains #### Intermediate energy: - 0.4 2.0 MeV - 7Be, pep, CNO #### Main backgrounds: - 85Kr - 238U and 232Th chains - 210Po 210Bi - **210Pb** chain - **11C** (cosmogenic) The main interaction channel is elastic scattering the electrons of the medium: $$u_x + e^- ightarrow u_x + e^-$$ Backgrounds control is one of the key challenge for measure intermediate energy which mimics neutrino signal # Intermediate energy: Cosmogenic backgrounds Using a technique called Three-Fold Coincidence (TFC) it is possible to tag the production of a 11C isotope in a cylindrical volume along the track of the particle. This allows to identify about 90% of the 11C events reducing this background ### Intermediate energy: Internal backgrounds Five purification plants to produce and purify the liquid scintillator going into JUNO Plus a continuos control in production and cleanness of each part of the detector ### Intermediate energy: Internal backgrounds Five purification plants to produce and purify the liquid scintillator going into JUNO Plus a continuos control in production and cleanness of each part of the detector The main interaction channel is elastic scattering the electrons of the medium: $$u_x + e^- ightarrow u_x + e^-$$ Backgrounds control is one of the key challenge for measure intermediate energy which mimics neutrino signal We evaluated three different radiopurity scenarios: | Borexino-like | ~10 ⁻¹⁹ g/g (U/Th) | |---------------|-------------------------------------| | Ideal | 10 ⁻¹⁷ g/g (U/Th) | | Baseline | 10 ⁻¹⁶ g/g (U/Th) | | Minimal (IBD) | 10 ⁻¹⁵ g/g (U/Th) | The main interaction channel is elastic scattering the electrons of the medium: $$u_x + e^- ightarrow u_x + e^-$$ Backgrounds control is one of the key challenge for measure intermediate energy which mimics neutrino signal We evaluated three different radiopurity scenarios: | Borexino-like | ~10 ⁻¹⁹ g/g (U/Th) | | |---------------|-------------------------------------|--| | Ideal | 10 ⁻¹⁷ g/g (U/Th) | | | Baseline | 10 ⁻¹⁶ g/g (U/Th) | | | Minimal (IBD) | 10 ⁻¹⁵ g/g (U/Th) | | As it has been done by the Borexino collaboration, using a **Monte Carlo based fitter** it is possible to separate all the contributions in this energy spectrum We need to have a very robust Monte Carlo tune on calibration data From this fit, we extracted relative uncertainty on **solar neutrino rates in the four radiopurity scenarios** in function of the acquisition time #### 10^-16 g/g scenario Improve current measurements: (with bkg $\leq 10^{-16}$ g/g) • pep and 7Be better than Borexino in ~2y **TAUP 2025** Improve current measurements: (with bkg ≤ 10^-16 g/g) - pep and 7Be better than Borexino in ~2y - CNO better than Borexino in ~6y (with no constraint on 210Bi) marco.beretta@mi.infn.it **TAUP 2025** #### High energy: - > 3 MeV - mostly 8B (hep) #### Main backgrounds: - Cosmogenics - External - Accidental for (CC) # High energy: 8B JUNO can detect **8B solar neutrinos** by looking to different interaction channels: ES: $$v_x + e^- \rightarrow v_x + e^-$$ - No threshold - All flavours & $\sigma(v_{u,\tau})$ / $\sigma(v_e)$ = 1/6 - Single events continuous spectrum CC: $$v_e + {}^{13}C \rightarrow e^- + {}^{13}N$$ - E_{thr} = 2.2 MeV - Possible only with $v_{\rm p}$ - Prompt: e⁻; Delayed: ¹³N decay NC: $$v_x + {}^{13}C \rightarrow v_x + {}^{13}C^*$$ - $E_{thr} = 3.685 \text{ MeV}$ - All flavors & equal σ - Single events monochromatic y #### High energy: 8B • ES: $$v_x + e^- \rightarrow v_x + e^-$$, with $x = e, \mu, \tau$ - \circ no energy threshold - o **continuous** energy spectrum - o all flavors with $\sigma(v_{\mu,\tau}) / \sigma(v_e) = 1/6$ - CC: $v_e + {}^{13}C \rightarrow e^- + {}^{13}N$ - o threshold of 2.2 MeV - o prompt-delayed coincidence - \circ only ν_e - o threshold of 3.685 MeV - mono-energetic gamma - o all flavors #### High energy: 8B **CC & ES**: their event rate depends on the **neutrino flux** and on the v **survival probability NC**: it will allow a model **independent measurement of** $\Phi(^8B)$, first after SNO Simultaneous measurement of $\Phi(^8B), \, \Delta m^2_{21}, sin^2(\theta_{12})$ #### Conclusions JUNO will perform important solar neutrino measurements, such as: - 8B flux with 5% precision after 10 years - Solar **oscillation parameters** independently from reactor - 7Be and pep fluxes better than Borexino in few years - CNO flux solar for metallicity problem JUNO data taking is going to start Current level of radiopurity is < 10⁻¹⁶ g/g U/Th The main interaction channel is elastic scattering the electrons of the medium: $$u_x + e^- ightarrow u_x + e^-$$ Backgrounds control is one of the key challenge for measure intermediate energy which mimics neutrino signal We evaluated three different radiopurity scenarios: | | U [g/g] | Th $[g/g]$ | K [g/g] | Kr [g/g] | |----------|-----------------------|-----------------------|---------------------|---------------------| | IBD | 1×10^{-15} | 1×10^{-15} | 1×10^{-16} | 4×10^{-24} | | Baseline | 1×10^{-16} | 1×10^{-16} | 1×10^{-17} | 4×10^{-25} | | Ideal | 1×10^{-17} | 1×10^{-17} | 1×10^{-18} | 8×10^{-26} | | BX-like | 5.7×10^{-19} | 9.4×10^{-20} | 2×10^{-19} | 8×10^{-26} | # Intermediate energy: solar metallicity | | Solar ν | $^7\mathrm{Be}$ | pep | CNO | |------------|---|-----------------|--------------------|--------------------| | HZ-
SSM | $\Phi [10^8 \mathrm{cm}^{-2} \mathrm{s}^{-1}]$ | 49.3(1±0.06) | $1.44(1\pm 0.009)$ | $4.88(1 \pm 0.11)$ | | | $R [\mathrm{cpd/kton}]$ | 489 ± 29 | 28.0 ± 0.4 | 50.3 ± 8.0 | | | $R^{ m ROI}$ [cpd/kton] | 142.5 ± 8.3 | 17.1 ± 0.2 | 16.6 ± 2.6 | | LZ-
SSM | $\Phi [10^8 \mathrm{cm}^{-2} \mathrm{s}^{-1}]$ | 45.0(1±0.06) | $1.46(1\pm 0.009)$ | $3.51(1 \pm 0.10)$ | | | R [cpd/kton] | 447 ± 26 | 28.4 ± 0.4 | 36.0 ± 5.3 | | | $R^{ m ROI}$ [cpd/kton] | 130.0 ± 7.5 | 17.3 ± 0.2 | 11.9 ± 1.8 | ### Intermediate energy: solar metallicity #### Global analysis of solar v fluxes - General agreement with SSM-HZ scenario - Binary hypothesis test: HZ vs LZ Assuming SSM-HZ, Borexino results on ${}^{7}\text{Be-}\nu + {}^{8}\text{B-}\nu + \text{CNO-}\nu,$ the SSM-LZ scenario is disfavored at ~3.1σ level PRL 129 (2022) 252701 "Improved Measurement of Solar