

XIX International Conference on Topics in Astroparticle and Underground Physics (TAUP2025) Aug 24–30, 2025 Xichang, Sichuan, China

Recent results from Baikal-GVD

Dmitry Zaborov (INR RAS) for the Baikal-GVD Collaboration

Baikal-GVD collaboration (as of Aug 2025)

11 research institutes from 4 countries, ~70 collaboration members

- Institute for Nuclear Research RAS (Moscow)
- Joint Institute for Nuclear Research (Dubna)
- Irkutsk State University (Irkutsk)
- Skobeltsyn Institute for Nuclear Physics MSU (Moscow)
- Nizhny Novgorod State Technical University (Nizhny Novgorod)
- Saint-Petersburg State Marine Technical University (Saint-Petersburg)
- National Research Nuclear University MEPHI, Moscow, Russia
- P.N. Lebedev Physical Institute (Moscow)
- Institute of Experimental and Applied Physics, Czech Technical University (Prague, Czech Republic)
- Comenius University (Bratislava, Slovakia)
- Institute of Nuclear Physics ME RK (Almaty, the Republic of Kazakhstan)

Baikal-GVD site

- 51° 46' N 104° 24' E
- Southern basin of Lake Baikal
- ~ 4 km away from shore
- Flat area at depths ~ 1360 m
- Stable ice cover for 6–8 weeks in February April: detector deployment & maintenance

- High water transparency
 - Absorption length: 22 m
 - \sim Scattering length: 30 50 m (L_{eff} ≈ 480 m)
- Moderately low optical background: 15-40 kHz (PMT R7081-100 Ø10")

Baikal-GVD technology

Optical module

string

section

90 m

Depths 750 m to 1275 m

anchor

Deployment

Baikal-GVD: current status

GVD = Gigaton Volume Detector **Deployment history**

Year	Number of clusters	Number of strings	Number of OMs	
2016	1	8	288	
2017	2	16	576	
2018	3	24	864	
2019	5	40	1440	
2020	7	56	2016	
2021	8	64	2304	
2022	10	80	2880	
2023	12	96	3456	
2024	13	114	4104	
2025	14	117	4212	

14 clusters + 8 laser/inter-cluster strings

+ 4 experimental strings

Eff. volume 2025: $\sim 0.7 \text{ km}^3$ (cascades, E $\sim 1 \text{ PeV}$)

Plan for 1 km 3 and 6000 OM in \sim 3 yr

Diffuse flux measurement with upward-going cascades

Data from Apr 2018 – March 2024 Event selection:

E > 15 TeV & N_{hit} >11 & $cos\theta_z$ < -0.25 & downgoing muon veto cuts

Expected background:

0.9 events from atm. muons

1.9 events from atm. neutrinos

Found in data: 18 events

Astro diffuse flux is observed with significance 5.1σ (stat.+syst.)

[arXiv:2507.01893] older version:https://doi.org/10.1103/PhysRevD.107.042005 28 Aug 2025 Recent re

 $\cos \theta$

7 / 18

Diffuse neutrino flux spectrum (upgoing cascades)

[arXiv:2507.01893]

Recent results from Baikal-GVL

8 / 18

28 Aug 2025

Baikal-GVD sky map (cascades only)

Cascade events from the 6-year dataset (Apr 2018 - March 2024)

For a search for associations with VLBI blazars using a subset of this sample see MNRAS 526, 942–951 (2023)

https://doi.org/10.1093/mnras/stad2641

Event triplet near Galactic plane

Three events close to the Galactic plane (grey line)

The red plus and circle – IC hotspot [Aartsen & et al. ApJ, 835,151 (2017)]

LS I +61 303 is a y-ray microquasar

https://doi.org/10.1093/mnras/stad2641

A high energy neutrino from the direction of TXS 0506+056

Analysis of data collected between April 2018 and March 2022 yields a sample of 11 high quality cascade-like neutrino candidate events, one of which lies within 90% error circle from TXS 0506+056

MJD = 59322.94855324 Zenith = 115° RA, Dec = 82.4°, 7.1° **E = 224±75 TeV**

This event is probably of astrophysical origin (signalness = 97%)

The chance probability for such an association to occur randomly due to the background is p = 0.0074

https://doi.org/10.1093/mnras/stad3653 GVD MNRAS 527 (2024) 8784 11 / 18

Probing Galactic neutrino flux above 200 TeV with Baikal-GVD

- test the Galactic excess at E>200 TeV
- Baikal-GVD cascades Apr 2018–Mar 2024
- simplest, model-independent median |b|test like in Kovalev et al. [APJL 940 (2022) L41)]

ApJ 982 (2025) 73 [arXiv:2411.05608]

Sample	$ b _{\text{med}}$	$\langle b _{\rm med} \rangle$	p	
	observed	expected		
Baikal-GVD cascades	10.4°	31.4°	$1.4 \cdot 10^{-2}$	(2.5σ)
IceCube cascades	12.4°	31.9°	$8.7 \cdot 10^{-3}$	(2.6σ)
IceCube tracks	24.7°	36.0°	$1.8\cdot 10^{-3}$	(3.1σ)
combined	23.4°	35.0°	$3.4 \cdot 10^{-4}$	(3.6σ)

12 / 18

Neutrino sky above 200 TeV

Constraints on multi-PeV neutrinos

Using non-observation of cascade-like events above 10^{3.5} TeV

[arXiv:2507.05769]

Towards diffuse flux with tracks (work in progress)

[G. Safronov et al, PoS (ICRC2025) 1162]

 $BDT_{HE} > 0.26, E_{rec}^{\mu} > 45 \text{ TeV}$

0.5

Error bars for MC not shown

→ 38 events observed while 25 events expected from background

1.5

 $\log_{10}(E_{rec}^{\mu}/TeV)$

Point-like source search with tracks

Guided search over a list of 112 objects using a simple cut & count analysis

5-year dataset: Apr 2019 - Mar 2024

The cuts on BDT and angular distance were optimized for best sensitivity to E⁻² spectrum

The sensitivity is similar the level of ANTARES 15 yr (and will be further improved)

The object with most events in the search cone (3) is Westerlund 1 (bkg=0.3; 2.89 σ pre-trial)

G. Safronov et al, PoS (ICRC2025) 1162

Baikal-GVD as a testbed for next-generation telescopes

2 "experimental" strings using fiber optic technology for data transmission and standard Baikal-GVD OMs

Two HUNT prototype strings deployed in 2024 & 2025 36 OMs in total IHEP (Beijing) & Baikal-GVD joint effort

Summary

- Baikal-GVD is a new neutrino telescope under construction in Lake Baikal
 - Volume approaching 0.7 km³ (cascades, E ~ 1 PeV)
 - Sub-degree angular resolution (tracks)
 - Field of view complementary to IceCube
- The IceCube's diffuse neutrino flux is confirmed by Baikal-GVD with a 5 σ significance
- Hints of Galactic and extragalactic neutrino sources are accumulating

Backup slides

Expected performance for tracks

Improvements expected from likelihoodbased reconstruction (under development)

energy resolution ~ factor 2.5 at E > 10 TeV (±34% containment band)

G. Safronov @ ICRC 2025

Cascade analysis performance

Directional resolution for cascades: median mismatch angle $\sim 4.5^{\circ}$

Energy resolution : $\delta E/E \sim 10 - 30\%$

Data 20

Upward-going cascade #1

GVD2019_1_114_N

Contained event (50 m off central string)

Excellent candidate for a neutrino event of astrophysical origin

Neutrino candidate events

Expected neutrino rates from individual sources

Fig. 2. 20-clustered Baikal-GVD effective area (blue) and 230-string KM3NeT effective area (red) at the trigger level [6].

Table 2. Registration rate (counts/5 years) for KM3NeT/ARCA (ARCA) and Baikal-GVD (Baikal) at trigger (trig) and reconstruction (reco) levels. The first column shows the calculation results from [1]. The second and the third ones show our results for KM3NeT/ARCA and Baikal-GVD. These three columns are for the trigger level, and the fourth column shows the ratio for Baikal-GVD and KM3NeT/ARCA also at the trigger level. The fifth column shows Baikal-reconstruction registration rate, and in the rightmost column Baikal-GVD reconstruction-trigger ratio is presented

Source	ARCA trig [1]	ARCA (trig)	Baikal (trig)	Baikal ARCA	Baikal (reco)	reco trig
RX J1713.7-3946	20.0	17.9	11.4	0.64	2.3	0.20
Vela X	40.7	37.2	19.5	0.52	4.88	0.25
Vela Jr	25.6	23.7	13.6	0.58	2.83	0.21
HESS J1614-518 (1)	10.5	9.0	6.1	0.68	1.5	0.25
HESS J1614-518 (2)	9.1	8.4	5.2	0.62	1.2	0.23
Galactic center	7.0	5.5	3.9	0.71	0.93	0.24
MGRO J1908+06 (1)	4.1	3.5	1.6	0.46	0.31	0.19
MGRO J1908+06 (2)	7.1	5.8	3.1	0.54	0.80	0.26
MGRO J1908+06 (3)	8.3	6.7	3.8	0.56	1.0	0.28
NGC 1068	_	52.8	66.4	1.3	3.1	0.05
TXS 0506+056 (1)	_	5.8	3.4	0.59	0.97	0.29
TXS 0506+056 (2)	_	5.0	3.1	0.63	0.96	0.31

PHYSICS OF PARTICLES AND NUCLEI LETTERS Vol. 21 No. 4 2024

https://doi.org/10.1134/S1547477124700912