

Investigating Neutrino Emission from Gamma-Ray (Galactic) Sources with KM3NeT/ARCA

Vittorio Parisi vparisi@ge.infn.it

Barbara Caiffi barbara.caiffi@ge.infn.it

Vladimir Kulikovsky adimir.kulikovskiy@ge.infn.it

Francisco Salesa Greus Paco.Salesa@ific.uv.es

Matteo Sanguineti Matteo.Sanguineti@ge.infn.it

List of Contents:

- High Energy Gamma rays Neutrinos Connection:
 - how to modelize the neutrino signal from a source using the gamma-ray observations.
- The KM3NeT/ARCA detector:
 - how to detect high energy astrophysical neutrino.
- Point-like (extended) source search:
 - how to analyse data to search for neutrino signal (binned likelihood method).
- Results and conclusions

Introduction

Neutrino sources are **cosmic ray accelerators**. The two main mechanisms of high-energy neutrino production are:

1) when cosmic rays interact with matter (hadro-nuclear interactions):

$$p + p \rightarrow p + n + \pi^{+}$$

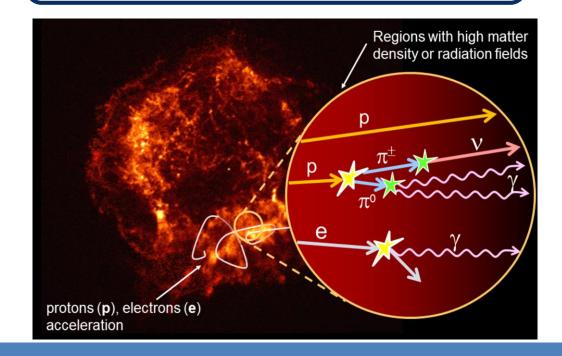
$$\rightarrow p + p + \pi^{0}$$

$$p + n \rightarrow p + p + \pi^{0}$$

$$\rightarrow p + p + \pi^{-}$$

2) when cosmic rays interact with photons (photo-hadronic interactions):

$$p + \gamma \to \Delta^+ \to n + \pi^+$$
$$\to p + \pi^0$$

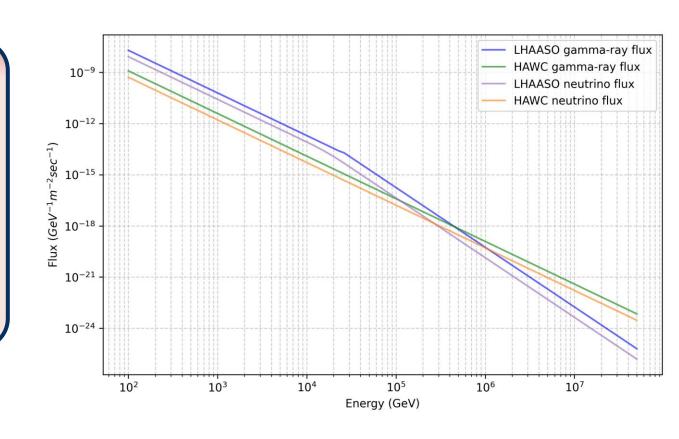

Neutrinos are produced in the decay of the charged pions:

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \qquad \qquad \pi^{-} \rightarrow \mu^{-} + \overline{\nu_{\mu}}$$

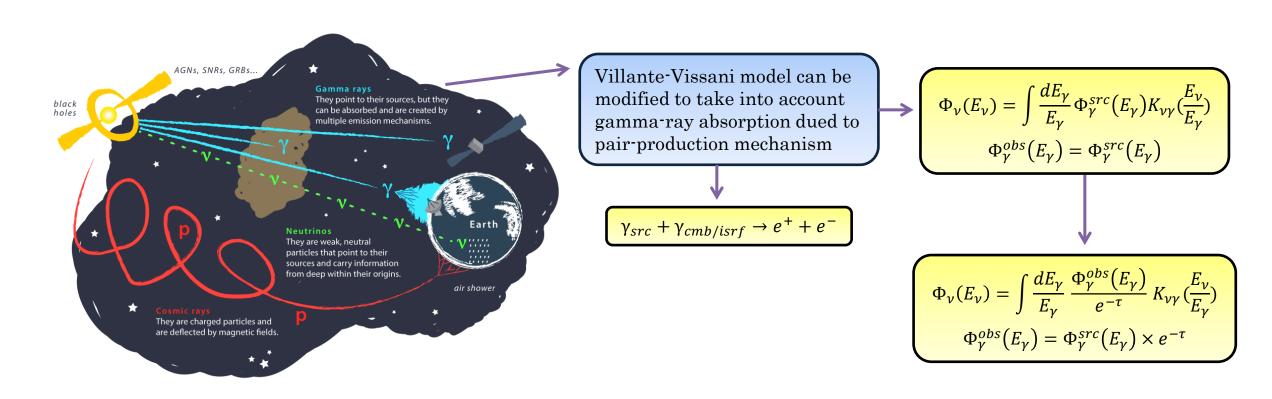
$$\mu^{+} \rightarrow e^{+} + \nu_{e} + \overline{\nu_{\mu}} \qquad \qquad \mu^{-} \rightarrow e^{-} + \overline{\nu_{e}} + \nu_{\mu}$$

While the neutral pions decay into γ -rays: $\pi^0 \rightarrow \gamma + \gamma$

Such high energy gamma-rays could be detected by high altitude gamma observatories like HAWC or LHAASO, while the neutrino component could be studied by neutrino telescopes as KM3NeT.

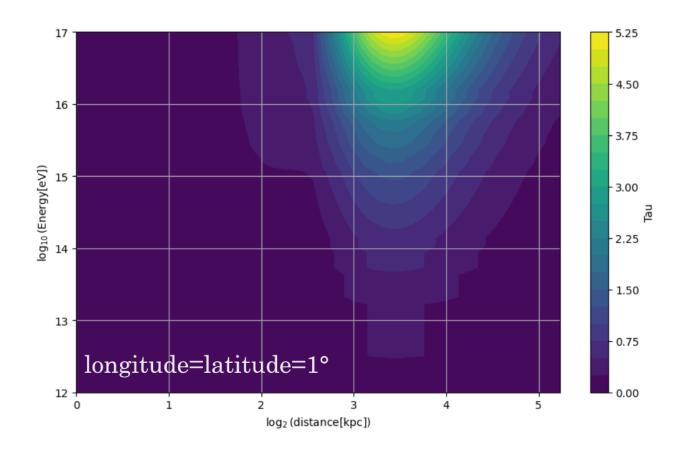


Gamma-rays Neutrino connection


- In Villante-Vissani (2008)*, it is developed a model to estimate the neutrino flux from astrophysical sources, using the measured gamma-ray flux. in case of p-p collisions.
- Such model assumed a full hadronic scenario (p-p collisions).
- The model was later refined by Mascaretti-Vissani(2019)** through the inclusion of the most recent neutrino oscillation parameters

$$\Phi_{\nu}(E_{\nu}) = \int \frac{dE_{\gamma}}{E_{\gamma}} \Phi_{\gamma}(E_{\gamma}) K_{\nu\gamma}(\frac{E_{\nu}}{E_{\gamma}})$$

Gamma-rays absorption

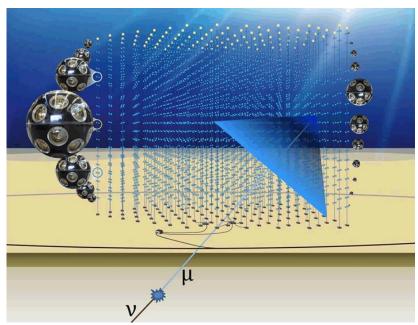


Absorption Factor Parameterization

$$e^{-\tau} \rightarrow \tau = \tau(E, \delta, RA, D)$$
 $E = \text{energy}$
 $\delta = \text{declination}$
 $RA = \text{Right Ascension}$
 $D = \text{Distance}$

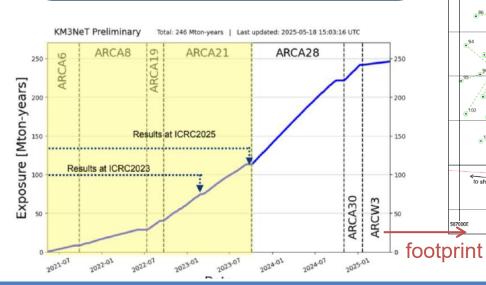
- The optical depth τ for pair production mechanism dued to the interaction with photon from Cosmic Microwave Background or from the Inter Stellar Radiation Field.
- It could be parameterized as done by **Lipari-Vernetto** (2016) as a function of the source position and distance.

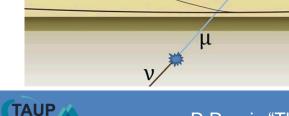
O M01-2015 O M01-2021 M02-2021 O M01-2022 M02-2022 O M01-2023 M01-2024 M01-2025


KM3NeT/ARCA51

MEOC1

MEOC2


KM3NeT Network


Location = Mediterranean Sea It will consits of building blocks of 115 strings each, with 18 Digital Optical Modules per string. In every DOM, are located 31 Photo-multipliers (PMT)

KM3NeT/ARCA

- 2 BBs for neutrino astronomy (located near Capo Passero, Italy).
- Vertical distance between OMs of 36 m, lateral distance between adjacent strings of 90 m.
- Neutrino energy range TeV-PeV

Data sample and Event selection

Only track-like events

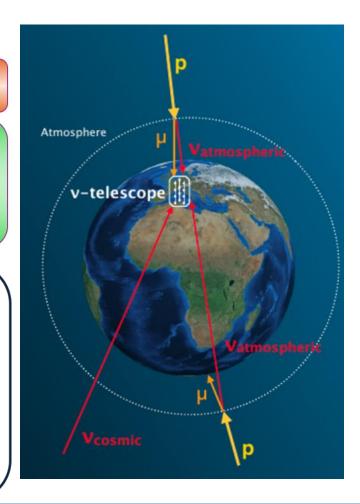
In total, 640 days of data

Detector lifetimes:

- ARCA6 \rightarrow 7949520.0 sec \rightarrow 92 days
- ARCA8 \rightarrow 18346400.0 sec \rightarrow 212 days
- ARCA19 \rightarrow 4181527.4 sec \rightarrow 48 days
- ARCA21 \rightarrow 24830910.5 sec \rightarrow 287 days

Signal definition: A cosmic neutrino with an outgoing muon reconstructed better than 1°.

Event <u>selection criteria</u>:

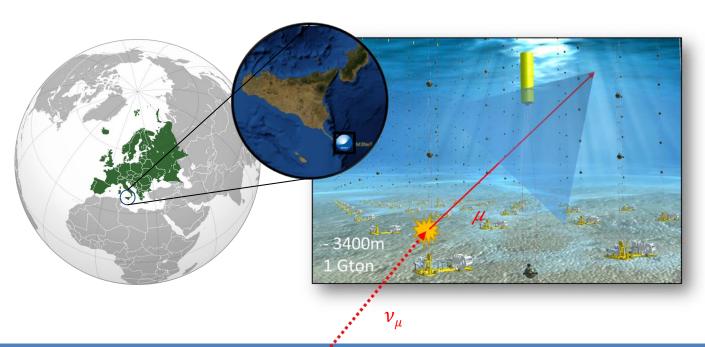

- select horizontal/up-going tracks,
- 2. select event with high number of hits used in the reconstruction,
- 3. select events with good fit quality (based on the likelihood of the reconstruction).

Additional selection criteria for the dominant ARCA19-21 sample:

- 1. select events with long track length,
- 2. select events estimated to have a small error in its reconstructed direction,
- 3. boosted decision tree.

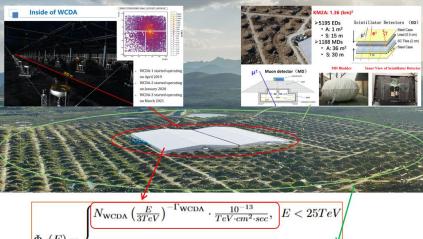
Background estimation: made with scrambled data.

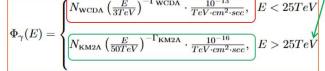
Very High Energy event KM3-230213A* removed from data sample.

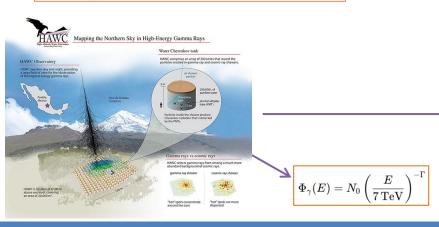


Full ARCA detector prospects

- The ARCA230 performance can be studied using the most updated simultaion*.
- Theoretical methods are used to modelize the signal.
- For this work, only track-like events are considered.







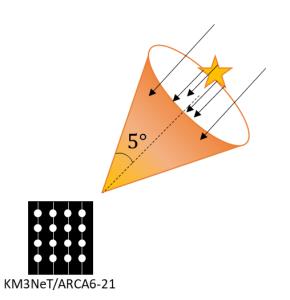
Candidate sources

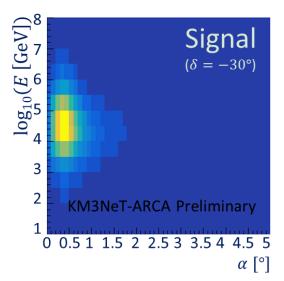
- 26 sources selected from the first LHAASO catalogue*.
- 6 sources selected from the third HAWC catalogue**.

Association (°)	Decl (°)	RA (°)	Source Name	#
HESSJ1809-193(0.24)	-19.3	272.38	1LHAASOJ1809-1918u	1
2HWCJ1814-173(0.16)	-17.89	273.27	1LHAASOJ1814-1719u*	2
HESSJ1825-137(0.56)	-14	276.25	1LHAASOJ1825-1418	3
HESSJ1825-137(0.15)	-13.63	276.45	1LHAASOJ1825-1337u	4
HESSJ1826-130(0.14)	-12.94	276.44	1LHAASOJ1825-1256u	5
HESSJ1813-126(0.07)	-12.75	273.36	1LHAASOJ1813-1245	6
HESSJ1831-098(0.25)	-9.83	277.81	1LHAASOJ1831-1007u*	7
HESSJ1834-087(0.24)	-8.38	278.44	1LHAASOJ1834-0831	8
HESSJ1837-069(0.05)	-6.86	279.31	1LHAASOJ1837-0654u	9
LHAASOJ1839-0545(0.17)	-5.81	279.79	1LHAASOJ1839-0548u	10
HESSJ1841-055(0.25)	-5.23	280.21	1LHAASOJ1841-0519	11
HESSJ1843-033(0.06)	-3.6	280.91	1LHAASOJ1843-0335u	12
HESSJ1848-018(0.11)	-1.78	282.02	1LHAASOJ1848-0153u	13
HESSJ1852-000(0.36)	-0.07	282.89	1LHAASOJ1850-0004u*	14
2HWCJ1852+013*(0.55)	0.84	283.10	1LHAASOJ1852+0050u*	15
HESSJ1858+020(0.21)	2.06	284.38	1LHAASOJ1857+0203u	16
SS433w1(0.26)	5.28	287.55	1LHAASOJ1910+0516*	17
MGROJ1908+06(0.07)	6.26	287.05	1LHAASOJ1908+0615u	18
HESSJ1912+101(0.10)	10.5	288.38	1LHAASOJ1912+1014u	19
2HWCJ1914+117*(0.13)	11.84	288.73	1LHAASOJ1914+1150u	20
HWCJ0700+143(0.72)	14.1	105.83	1LHAASOJ0703+1405	21
W51(0.13)	14.11	290.73	1LHAASOJ1922+140	22
Geminga(0.54)	17.69	98.57	1LHAASOJ0634+1741u	23
Crab(0.01)	22.036	83.61	1LHAASOJ0534+2200u	24
HAWCJ0543+233(0.21)	23.2	85.71	1LHAASOJ0542+2311u	25
LHAASOJ0621+3755(0.03)	37.9	95.5	1LHAASOJ0622+3754	26

Table 1: List of selected sources from the LHAASO catalogue [2]; for each source, the coordinates (right ascension RA and declination Decl) are reported as well as the estimated extension/width and the associated source (with the distance)

	#	Source Name	$RA(^\circ)$	Decl (°)	Association
_	1	3HWCJ1757-240	269.30	-24.09	HESSJ1800-240B
	2	3HWCJ1803-211	270.97	-21.18	HESSJ1804-216
	3	3HWCJ1849+001	282.35	0.15	IGRJ18490-0000
	4	3HWCJ1857+027	284.33	2.80	HESSJ1857+026
	5	3HWCJ0634+067	98.66	6.73	HAWCJ0635+070
	6	3HWCJ0617+224	94.39	22.47	IC443


Table 2: List of selected sources from the 3rd HAWC catalogue [1]; for each source, the coordinates (right ascension RA and declination Decl) are reported as well as the estimated extension/width and the associated source (with the distance).



The analysis

A binned analysis is performed for each candidate sources. It is checked in a 5 degree cone around each source whether the position, and energy distributions are in line with a cosmic neutrino excess. The log-likelihood is the Poisson probability of the bin-contents.

$$\lambda = \operatorname{Log} L(\xi = \hat{\xi}) - \operatorname{Log} L(\xi = 0)$$

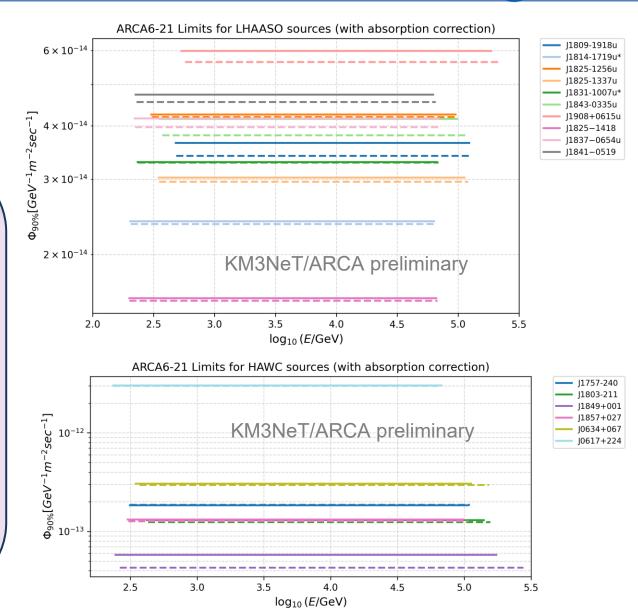
$$\operatorname{Log} L(\xi) = \sum_{i \in bins} N_i \operatorname{Log}(B_i + \xi S_i) - B_i - \xi S_i$$

$$\Phi_{\nu}(E_{\nu}) = \int \frac{dE_{\gamma}}{E_{\gamma}} \Phi_{\gamma}^{src}(E_{\gamma}) K_{\nu\gamma}(\frac{E_{\nu}}{E_{\gamma}})$$

$$\Phi_{\gamma}^{obs}(E_{\gamma}) = \Phi_{\gamma}^{src}(E_{\gamma})$$

$$\Phi_{\nu}(E_{\nu}) = \int \frac{dE_{\gamma}}{E_{\gamma}} \frac{\Phi_{\gamma}^{obs}(E_{\gamma})}{e^{-\tau}} K_{\nu\gamma}(\frac{E_{\nu}}{E_{\gamma}})$$

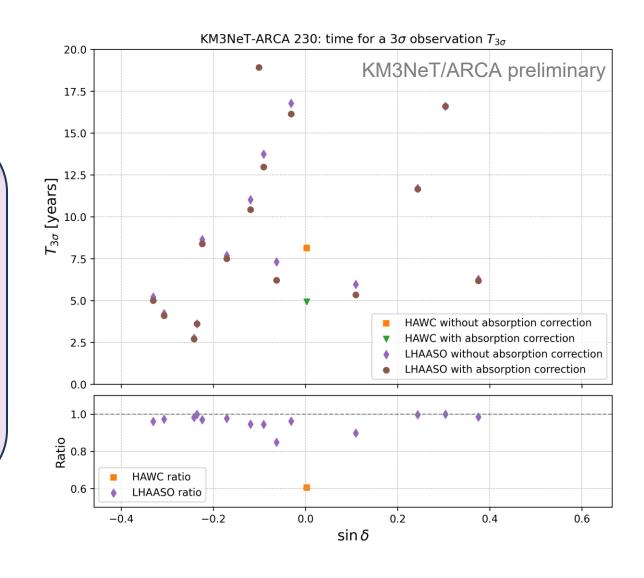
$$\Phi_{\gamma}^{obs}(E_{\gamma}) = \Phi_{\gamma}^{src}(E_{\gamma}) \times e^{-\tau}$$



Results:

Using KM3NeT/ARCA6-21 DATA, no significant signal evidence is found. The flux upper limits are computed as the energy range where 90% of the signal is expected:

- With/without absorption correction (dashed/continuous lines).
- 10 sources from the LHAASO catalogue with the best upper limits, the best 3 are **J1825-1418**, **J1814-1719u*** and **J1825-1337**.
- The best 3 HAWC sources: **J1849+001**, **J1857+027** and **J1803-211**.
- "Taking into account gamma-ray absorption" could have an impact of 25% for some of the sources.



Results:

The KM3NeT/ARCA230 Performance: time to make a 3 sigma significant observation is computed for the full detector.

- For **5 sources**, a 3σ observation could be made in **5** years, taking into account absorption
- For **10 sources**, a 3σ observation could be made in **10 years**, taking into account absorption.
- For **16 sources**, a 3σ observation could be made in **20** years, taking into account absorption.

Conclusions

Gamma-ray observation are used to modelize the neutrino signal from galactic sources

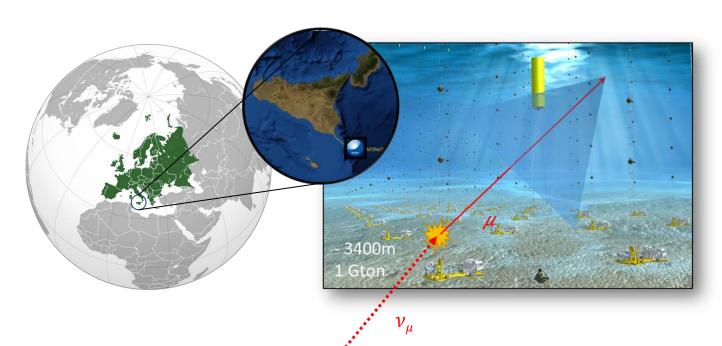
<u>Search in the available data</u>: In the point source search <u>no significant neutrino source</u> was found among the list of 32 checked candidate sources. Upper limits are then computed

- The best 3 sources from the LHAASO catalogue: **J1825-1418**, **J1814-1719u*** and **J1825-1337**.
- The best 3 sources from the HAWC catalogue: **J1849+001**, **J1857+027** and **J1803-211**.

<u>Complete detector prospects</u>: in the future KM3NeT/ARCA230 would be able to make significant observation for many of the considered sources.

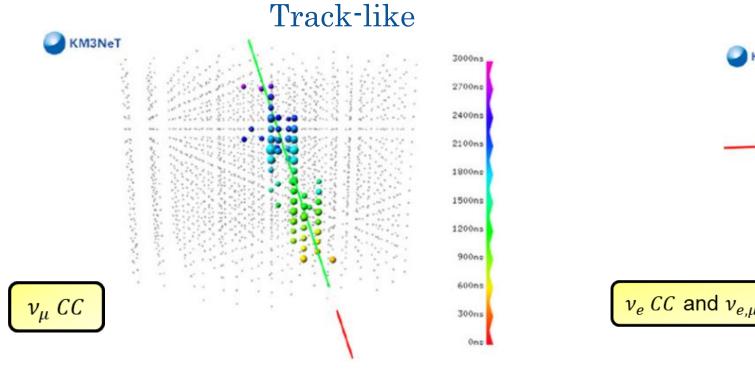
With the rapid growth of KM3NeT/ARCA, and data of sept 2023-today still to be included in the analysis, the results are expected to significantly improve in the near future.

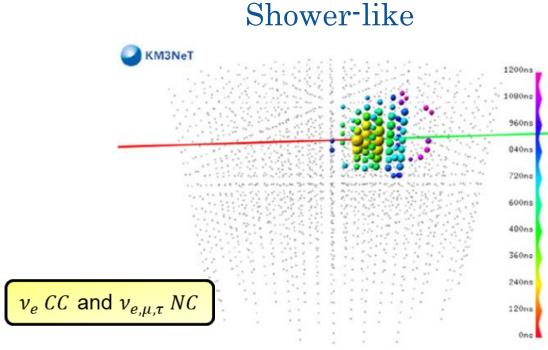
Thanks for the attention.


Backup Slides

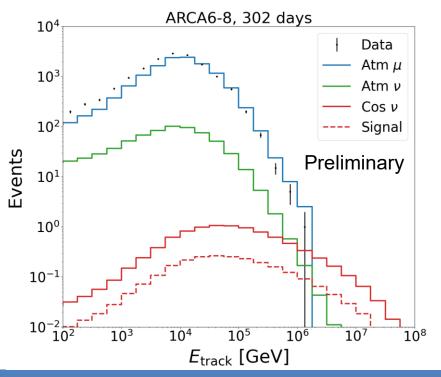
The KM3NeT/ARCA detector

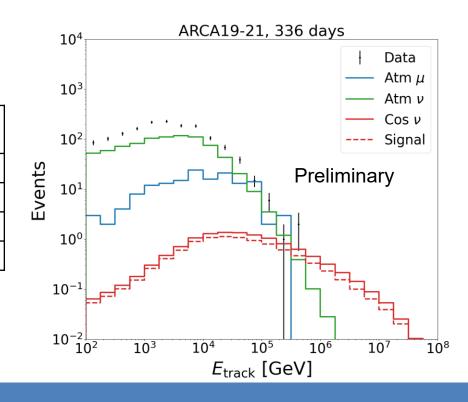
KM³ Neutrino Telescope / Astroparticle Research with Cosmics in the Abyss is a neutrino observatory, currently being built at the bottom of the Mediterranean Sea. It can do multi-flavour astronomy $(\nu_e, \nu_\mu, \nu_\tau)$, will have subdegree angular resolution, is sensitive in a large energy range [MeV - PeV], and can probe many different type of ν -sources. Its location in the Northern hemisphere provides a good view of the Galactic Region.





Event Topology in a Neutrino Telescope:

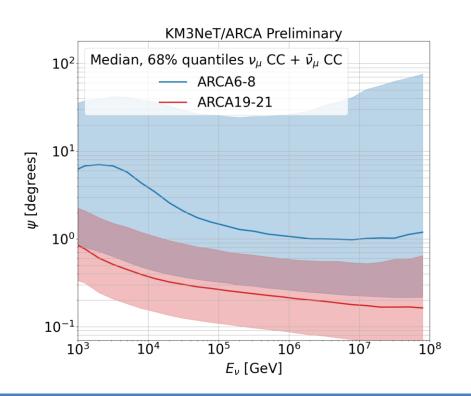


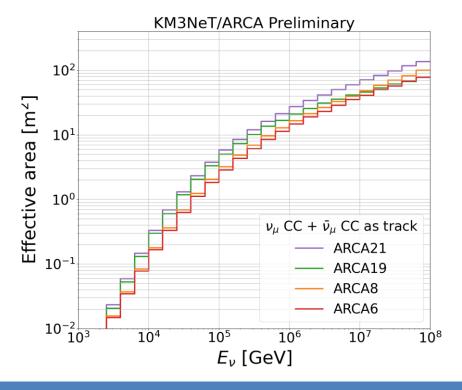

Data sample after event selection

Data are taken with 6 - 21 lines, between May 2021 and Sept. 2023. After event selection, the dominant ARCA19-21 data sample has a muon contamination of 15%. A cosmic neutrino flux of $\phi_{v+\bar{v}} = 1.2 \cdot 10^{-4} (E_v/\text{GeV})^2$ per flavour yields 21.4 cosmic neutrino events in the full ARCA6-21 sample, of which 12.1 contain a muon and are reconstructed

Nº events
4205
11537
182
1361*
_

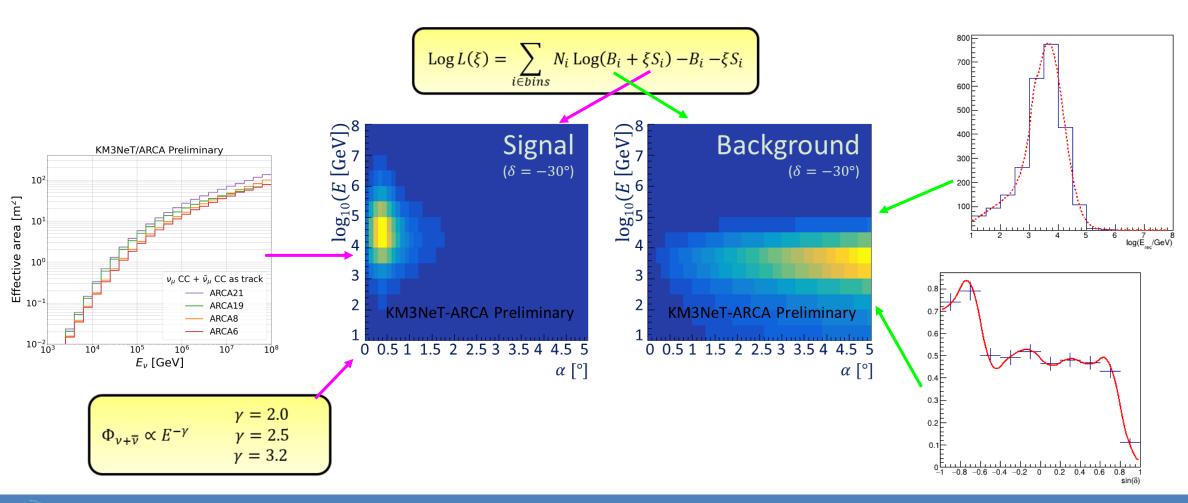
* KM3-230213A removed





Detector performance

The median angular uncertainty for ARCA6-8 is $< 2^{\circ}$ above 100 TeV, this improved significantly to $< 0.3^{\circ}$ for ARCA19-21, and is expected to improve further down to $< 0.1^{\circ}$ for the full detector (ARCA230^[*])



Binned Likelihood: basic idea

