
Impact of Coherent Scattering
on Cosmic-Ray Boosted Relic Neutrinos

Jiajun Liao

Sun Yat-Sen University

In collaboration with Jiajie Zhang, Alexander Sandrock and Baobiao Yue
Based on arXiv:2505.04791

The XIX International Conference on Topics in Astroparticle and Underground Physics

Xichang, China, 8/28/2025

Jiajun Liao (SYSU) Cosmic-ray boosted CνB 1 / 16



Table of Contents

1 Cosmic-ray boosted relic neutrinos

2 Coherent elastic neutrino-nucleus scattering

3 Constraints on CνB overdensity

4 Summary

Jiajun Liao (SYSU) Cosmic-ray boosted CνB 2 / 16



Neutrino Spectrum at Earth

Vitagliano, Tamborra, Raffelt1 [1910.11878]

Two key targets remain undetected:

Cosmogenic neutrinos – produced by UHECR scattering on the CMB
(GZK process).
Relic neutrinos – predicted by ΛCDM, but extremely challenging to
detect directly (T ≃ 1.95 K).
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Tritium Capture of Relic Neutrinos

PTOLEMY storing tritium atoms on a graphene sheet, but still faces
severe technical challenges by the Heisenberg uncertainty principle.

Cheipesh, Cheianov, Boyarsky [2101.10069]

Neutrino number overdensity can be greatly enhanced in some
non-standard scenarios; a hypothetical local source can reach
η ∼ 1011.

Bondarenko, Boyarsky, Pradler, Sokolenko [2306.12366]

The strongest experimental constraint on the local overdensity is
η < 9.7× 1010 at KATRIN.

KATRIN [2202.04587]
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Cosmic-Ray Boosted CνB

Non-observation of boosted flux in the Milky Way and at blazar TXS
0506+056 set upper limits on local CνB overdensity ∼ 1013 and
∼ 1011 at the blazar.

Ćıscar-Monsalvatje, Herrera, Shoemaker [2402.00985]

Considered cosmic-ray reservoirs (e.g. galaxy clusters with long
UHECR trapping), and set the limit on overdensity in clusters down
to η ∼ 1010 .

De Marchi, Granelli, Nava, Sala [2405.04568]
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Diffuse Boosted CνB

Calculated the diffuse boosted CνB assuming pure-proton cosmic rays
across cosmic history.

Herrera, Horiuchi, Qi [2405.14946]
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Mass Composition of UHECR

Recent Pierre Auger Observatory (PAO) data shows that there are
< 10% protons above 10 EeV, i.e. heavy nuclei dominate.

Pierre Auger [2211.02857]
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Coherent Elastic Neutrino-nucleus Scattering (CEνNS)

For Eν ≲ O(10) MeV, neutrinos scatter off the nucleus as a whole
since the momentum transfer is smaller than the inverse of the
nuclear radius, and the cross section can be coherently enhanced.

Freedman Phys. Rev. D 9, 1389 (1974)

2017 — first observed by COHERENT in stopped π beams.

2024 — solar 8B neutrinos by PandaX and XENONnT.

2025 — reactor neutrinos by CONUS+. [See Manfred Lindner’s talk]
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Coherent Enhancement for Boosted CνB

Observations from the PAO, KASCADE-Grande, and TA show an
increasing prevalence of heavy nuclei at ultra-high-energies. Some
studies even adopt a pure iron model for UHECR composition.

Kachelriess, Semikoz [1904.08160]

For iron CR with ENi
∼ 10 EeV scattering on a relic neutrino of

mν = 0.1 eV, CνB energy is ∼ 20 MeV in nucleus rest frame —
exactly in the CEνNS regime.
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Scattering Cross Sections

The total differential cross section of neutrino-nucleus scattering includes
both coherent and incoherent contributions:

Bednyakov, Naumov [1806.08768]
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Coherent ∝ N2 and F 2(q2), corresponding to scattering on the whole nucleus.
Incoherent ∝ N (Z) and

(
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)
, corresponding to scattering on individual nucleons.
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Numerical results

Total cross section
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For EN > 10 EeV, heavier nuclei have
larger cross sections.

For EN < 10 EeV, proton elastic
scattering dominates.

Differential cross section (EN = 100 EeV)

103 104 105 106 107 108 109 1010 1011

Eν (GeV)

10−51

10−50

10−49

10−48

10−47

10−46

10−45

10−44

d
σ
ν
N

d
E
ν

(c
m

2
G

eV
−

1
)

Kinematic cutoff

Emax
ν =

E 2
Ni

ENi +m2
Ni
/(2mν)

As momentum transfer q =
√
2mνEν increases, the dominant contribution changes from

coherent to incoherent part: when q is small, F 2(q2)≃1 ⇒ coherent part dominates; when
q is large, 1− F 2(q2)≃1 ⇒ incoherent part dominates.
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Diffuse Flux of Boosted CνB at Earth

The diffuse flux of UHECR boosted CνB at Earth is:
Herrera, Horiuchi, Qi [2405.14946]
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where f (z) is CR source distribution from star formation rate (SFR) model, and
dϕNi

dENi
is all-particle CR energy spectrum adopt from the Hillas model.
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Compare with Experimental Data
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The boosted CνB flux decreases as the lightest neutrino mass
becomes smaller.

Boosted flux peaks at different energies than cosmogenic neutrinos.

The peak of the boosted CνB flux coincides with KM3-230213A
event.
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Constraints on CνB Overdensity
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At m1 = 0.1 eV, IceCube (PAO) sets η < 4.2× 106 (6.2× 107) at 90% CL;
Stronger than KATRIN bound.

For m1 < 0.01 eV, the bounds become flat as the flux is dominated by the
heavier eigenstates m2 and m3.

Explaining KM3-230213A requires η ∈ [ 3.7× 108, 1.5× 1010 ] for
m1 = 0.01 eV.
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Summary

Comic-ray boosted CνB provides a new source of ultra-high-energy
neutrinos.

The cross section of UHECR scattering off CνB can be coherently
enhanced; similar to terrestrial CEνNS experiments.

Non-observation of boosted flux at IC and PAO set a stronger bound
on CνB overdensity than current experimental limit at KATRIN.

The explanation of the KM3-230213A event requires an overdensity
of η ∼ 108.
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Thanks for your attention!


	Cosmic-ray boosted relic neutrinos
	Coherent elastic neutrino-nucleus scattering
	Constraints on CB overdensity
	Summary

