Impact of Coherent Scattering on Cosmic-Ray Boosted Relic Neutrinos

Jiajun Liao

Sun Yat-Sen University

In collaboration with Jiajie Zhang, Alexander Sandrock and Baobiao Yue
Based on arXiv:2505.04791

The XIX International Conference on Topics in Astroparticle and Underground Physics Xichang, China, 8/28/2025

Table of Contents

- Cosmic-ray boosted relic neutrinos
- 2 Coherent elastic neutrino-nucleus scattering
- 3 Constraints on $C\nu B$ overdensity
- 4 Summary

Neutrino Spectrum at Earth

- Vitagliano, Tamborra, Raffelt1 [1910.11878]
- Two key targets remain undetected:
 - Cosmogenic neutrinos produced by UHECR scattering on the CMB (GZK process).
 - Relic neutrinos predicted by Λ CDM, but extremely challenging to detect directly ($T \simeq 1.95$ K).

Tritium Capture of Relic Neutrinos

 PTOLEMY storing tritium atoms on a graphene sheet, but still faces severe technical challenges by the Heisenberg uncertainty principle.

Cheipesh, Cheianov, Boyarsky [2101.10069]

• Neutrino number overdensity can be greatly enhanced in some non-standard scenarios; a hypothetical local source can reach $\eta \sim 10^{11}$.

Bondarenko, Boyarsky, Pradler, Sokolenko [2306.12366]

• The strongest experimental constraint on the local overdensity is $\eta < 9.7 \times 10^{10}$ at KATRIN.

KATRIN [2202.04587]

Cosmic-Ray Boosted $C\nu B$

Prog. Theor. Phys. Vol. 64, No. 3, September 1980, Progress Letters

Scattering of the Cosmic Neutrinos by High Energy Cosmic Rays

Tetsuya HARA* and Humitaka SATO

*Department of Physics, Kyoto Sangyo University, Kyoto 603

Research Institute for Fundamental Physics

Kyoto University, Kyoto 606

(Received June 23, 1980)

• Non-observation of boosted flux in the Milky Way and at blazar TXS 0506+056 set upper limits on local C ν B overdensity $\sim 10^{13}$ and $\sim 10^{11}$ at the blazar.

Císcar-Monsalvatje, Herrera, Shoemaker [2402.00985]

• Considered cosmic-ray reservoirs (e.g. galaxy clusters with long UHECR trapping), and set the limit on overdensity in clusters down to $\eta \sim 10^{10}$.

De Marchi, Granelli, Nava, Sala [2405.04568]

Diffuse Boosted $C\nu B$

• Calculated the diffuse boosted $C\nu B$ assuming pure-proton cosmic rays across cosmic history.

Herrera, Horiuchi, Qi [2405.14946]

Mass Composition of UHECR

Recent Pierre Auger Observatory (PAO) data shows that there are
 10% protons above 10 EeV, i.e. heavy nuclei dominate.

Pierre Auger [2211.02857]

Coherent Elastic Neutrino-nucleus Scattering (CE ν NS)

• For $E_{\nu} \lesssim \mathcal{O}(10)$ MeV, neutrinos scatter off the nucleus as a whole since the momentum transfer is smaller than the inverse of the nuclear radius, and the cross section can be coherently enhanced.

Freedman Phys. Rev. D 9, 1389 (1974)

$$\frac{d\sigma}{dE_r} = \frac{G_F^2 m_N}{4\pi} \left(1 - \frac{E_r m_N}{2E_v^2} \right) Q_{\text{SM}}^2 \boldsymbol{F}(\boldsymbol{q}^2)^2$$
$$Q_{\text{SM}}^2 = \left(Z g_p^V + N g_n^V \right)^2 \propto N^2$$

- ullet 2017 first observed by COHERENT in stopped π beams.
- 2024 solar ⁸B neutrinos by PandaX and XENONnT.
- 2025 reactor neutrinos by CONUS+.

[See Manfred Lindner's talk]

Coherent Enhancement for Boosted $C\nu B$

 Observations from the PAO, KASCADE-Grande, and TA show an increasing prevalence of heavy nuclei at ultra-high-energies. Some studies even adopt a pure iron model for UHECR composition.

Kachelriess, Semikoz [1904.08160]

• For iron CR with $E_{\mathcal{N}_i} \sim 10$ EeV scattering on a relic neutrino of $m_{\nu}=0.1$ eV, C ν B energy is ~ 20 MeV in nucleus rest frame — exactly in the CE ν NS regime.

Scattering Cross Sections

The total differential cross section of neutrino-nucleus scattering includes both coherent and incoherent contributions:

Bednyakov, Naumov [1806.08768]

$$\frac{d\sigma^{\nu\mathcal{N}_i}}{dE_{\nu}} = \frac{d\sigma_{\mathsf{coh}}^{\nu\mathcal{N}_i}}{dE_{\nu}} + \frac{d\sigma_{\mathsf{incoh}}^{\nu\mathcal{N}_i}}{dE_{\nu}}$$

Coherent differential cross section:

$$\frac{d\sigma_{\mathsf{coh}}^{\nu \mathcal{N}_{i}}}{dE_{\nu}} = \frac{2G_{F}^{2}m_{\nu}}{\pi} Q_{W,i}^{2} \left(1 - \frac{E_{\nu}}{E_{\mathcal{N}_{i}}} - \frac{m_{\mathcal{N}_{i}}^{2}E_{\nu}}{2m_{\nu}E_{\mathcal{N}_{i}}^{2}}\right) F^{2}(q^{2})$$

Incoherent differential cross section:

$$\frac{d\sigma_{\text{incoh}}^{\nu N_i}}{dE_{\nu}} = \left[Z_i \frac{d\sigma_{\text{ES}}^{\nu p}}{dE_{\nu}} + N_i \frac{d\sigma_{\text{ES}}^{\nu n}}{dE_{\nu}} \right] \left(1 - F^2(q^2) \right)$$

- Coherent $\propto N^2$ and $F^2(q^2)$, corresponding to scattering on the whole nucleus.
- Incoherent $\propto N(Z)$ and $(1-F^2(q^2))$, corresponding to scattering on individual nucleons.

Jiajun Liao (SYSU) Cosmic-ray boosted C ν B 10/16

Numerical results

- For $E_N > 10 \text{ EeV}$, heavier nuclei have larger cross sections.
- For $E_N < 10 \text{ EeV}$, proton elastic scattering dominates.

Kinematic cutoff

$$E_
u^{\sf max} = rac{E_{N_i}^2}{E_{N_i} + m_{N_i}^2/(2m_
u)}$$

As momentum transfer $q = \sqrt{2m_{\nu}E_{\nu}}$ increases, the dominant contribution changes from coherent to incoherent part: when q is small, $F^2(q^2) \simeq 1 \Rightarrow$ coherent part dominates; when q is large, $1 - F^2(q^2) \simeq 1 \Rightarrow$ incoherent part dominates.

Diffuse Flux of Boosted $C\nu B$ at Earth

The diffuse flux of UHECR boosted $C\nu B$ at Earth is:

Herrera, Horiuchi, Qi [2405.14946]

$$\frac{d\phi_{\nu}}{dE_{\nu}} = \sum_{i,j} \int_{z_{\text{min}}}^{z_{\text{max}}} dz \; \frac{c}{H(z)} \; f(z) \; \eta \; n_{\nu_{j}} (1+z)^{3} \int_{0}^{\infty} dE_{\mathcal{N}_{i}} \; \frac{d\sigma^{\nu\mathcal{N}_{i}}}{dE'_{\nu}} \; \frac{d\phi_{\mathcal{N}_{i}}}{dE_{\mathcal{N}_{i}}} \; \Theta\left[E_{\nu}^{\text{max}} - E'_{\nu}\right] \; , \label{eq:dphi}$$

where f(z) is CR source distribution from star formation rate (SFR) model, and $\frac{d\phi_{\mathcal{N}_i}}{dE_{\mathcal{N}_i}}$ is all-particle CR energy spectrum adopt from the Hillas model.

Compare with Experimental Data

- The boosted $C\nu B$ flux decreases as the lightest neutrino mass becomes smaller.
- Boosted flux peaks at different energies than cosmogenic neutrinos.
- The peak of the boosted $C\nu B$ flux coincides with KM3-230213A event.

Constraints on $C\nu B$ Overdensity

- At $m_1=0.1~{\rm eV}$, IceCube (PAO) sets $\eta<4.2\times10^6~(6.2\times10^7)$ at 90% CL; Stronger than KATRIN bound.
- For $m_1 < 0.01 \text{ eV}$, the bounds become flat as the flux is dominated by the heavier eigenstates m_2 and m_3 .
- Explaining KM3-230213A requires $\eta \in [3.7 \times 10^8, 1.5 \times 10^{10}]$ for $m_1 = 0.01 \text{ eV}$.

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ト ・ 恵 ・ 夕 へ ②

Summary

- Comic-ray boosted $C\nu B$ provides a new source of ultra-high-energy neutrinos.
- The cross section of UHECR scattering off $C\nu B$ can be coherently enhanced; similar to terrestrial $CE\nu NS$ experiments.
- Non-observation of boosted flux at IC and PAO set a stronger bound on $C\nu B$ overdensity than current experimental limit at KATRIN.
- The explanation of the KM3-230213A event requires an overdensity of $\eta \sim 10^8$.

Thanks for your attention!