Testing the Gallium neutrino anomaly... with CEvNS?

Giovanni Benato, A. Melchiorre, F. M. Pofi, A. Puiu, C. A. Ternes

TAUP 2025, Xichang, China

Towards precision measurements with CEvNS

$$\frac{d\sigma_{\nu\mathcal{N}}}{dT_{\mathcal{N}}} = \frac{G_F^2 m_{\mathcal{N}}}{\pi} \left(Q_V^{\text{SM}} \right)^2 F_W^2(|\mathbf{q}|^2) \left(1 - \frac{m_{\mathcal{N}} T_{\mathcal{N}}}{2E_{\nu}^2} \right)$$

- Incoming neutrino energy
 - →Precise knowledge of neutrino spectrum is required
 - →Mono-energetic neutrinos highly desirable
- \circ Weak charge $Q_V^{\mathrm{SM}} = g_V^p Z + g_V^n N$
 - →Spectral deformation could allow measuring coupling constants

- Stopped-pion v beams: non-monoenergetic delayed neutrinos; intrinsic neutron background?
- Reactor neutrinos: spectrum poorly known; intrinsic neutron background?
- Possible alternative: EC source
 - Already considered in the past, but deemed as unfeasible...

Detecting CEvNS with EC neutrino sources

- v energy ≤1 MeV
 - Required E_{thr} at few eV level
 - Practically, must use low temperature calorimeters
- Can measure source activity to percent level
- High v fluxes achievable
 - Non-trivial source production and transportation
- Monoenergetic v's with well-known energy
 - Can aim at precision study of recoil spectrum
- High Q-value ⇔ Short half-life
 - o Allows source-on/source-off measurement
- Intrinsic source-on background possible
 - Most probably, low-E γ's spoiling nuclear recoil band
 - Can measure source contaminants with independent detection channel

Electron-capture v sources

⁵¹Cr

- Enrich chromium in ⁵⁰Cr, deplete in ⁵³Cr
- Activate ⁵¹Cr with thermal neutrons
- Cr impurities could be activated
- A_{max} = 3.14 MCi (1.16 e17 Bq) from BEST
- Emitted particles:
 - ~750 keV neutrinos (90%)
 - ~430 keV neutrinos + 320 keV γ-rays (10%)

³⁷**Ar**

- Irradiate CaO with >2 MeV neutrons: 40 Ca(n, α) 37 Ar
- Dissolve CaO in HNO₃ then collect ³⁷Ar
 → Compact and pure source!
- A_{max} = 409 kCi (1.5e16 Bq) from SAGE
- Emitted particles:
 - ~813 keV neutrinos (100%)

CEVNS on Lithium

- Very low CEvNS cross section (**)

 - Need high-intensity v flux
- Large nuclear recoil energy 😉
 - Relax E_{thr} requirement up to tens of eV
- No long-lived isotopes 😉
 - No intrinsic background
- Easily enriched to 99% in ⁶Li or ⁷Li 😉
 - Allows differential measurement of v flux
 - Can be sensitive to axial-vector neutron coupling term
- Several Li-based commercial crystals available 😉
 - Several possibilities to operate as bolometers

Experimental design

- Array of lithium-based crystals operated as bolometers
 - Possible crystals: LiF, Li₂WO₄, LiI, Li₂MoO₄
- Temperature readout: Transition Edge Sensors or Kinetic Inductance Detectors
 - Must find trade-off between threshold and crystal mass
 - Total mass up to O(10) kg can be conceived
- EC source surrounded by detectors to maximize geometric coverage
 - Requires custom cryostat vessel with borehole to allow source insertion without affecting detector operation
 - Also, the source would be literally too hot to be placed in the cryostat

On the way to precision measurements

Why don't we exploit CEvNS to test the Gallium anomaly?

Gallium neutrino anomaly

- GALLEX/GNO and SAGE experiments build to cross-check Homestake anomalous result on solar neutrino flux
- Exploited signature:
 - Inverse electron capture on gallium: 71 Ga(v_e ,e $^-$) 71 Ge \rightarrow No direct detection of IEC!
 - \circ Collect Ge and measure X-rays from ⁷¹Ge decay \rightarrow Must keep total efficiency under control!
- Cross check of total efficiency: expose detector to neutrinos from EC source with well-known activity
 - Used both ⁵¹Cr and ³⁷Ar sources
 - 20% deficit in v activity w.r.t. calorimetric and γ/X-ray activity
 - →This is the "Gallium neutrino anomaly"
- BEST (SAGE upgrade) confirmed the anomaly
- Overall significance ~5σ
- Sterile v mostly excluded, but anomaly remains!

Testing the gallium neutrino anomaly with CEvNS on Li

Assumptions:

- o 51Cr source with 61PBq (same as GALLEX)
- Assume 20 eV threshold
- o 30 days of measurement
- Zero background
- LiF or Li₂WO₄ crystals 99% enriched in ⁶Li or ⁷Li

Results:

 \circ 8 kg of total mass sufficient to provide 5 σ sensitivity!

Caveats:

- Zero background assumption is very strong
- Main expected background from "low-energy excess"

Experimental requirements

- Source production and transportation
 - Must reach O(MCi) activity
 - Painful bureaucracy and logistic
- Measurement of source activity with <1% precision
 - Calorimetric measurement (i.e. we measure the total heat produced by the source)
 - For ⁵¹Cr, measure activity of 320 keV γ
 - For ³⁷Ar, measure X-ray activity
- Detector mass
 - Minimum requirement 8 kg, desirable 50kg
- Energy threshold
 - Minimum requirement, 90% trigger efficiency @50 eV, desirable
 @10eV
- Background
 - Minimum requirement <0.02 events/eV/kg/day, desirable <0.001 events/eV/kg/day
 - Low-energy excess must be addressed

Testing sterile neutrino hypothesis of gallium anomaly

The Gallium anomaly can be explained by short baseline neutrino oscillations due to light sterile neutrinos

$$P_{ee} = 1 - \sin^2 2\theta_{ee} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

With a 10 kg detector and an exposure of 30 days our experiment can test nearly all of the parameter space required to explain the Gallium anomaly

First tests with Li₂WO₄ crystal

- Tested a 25 gram Li2WO4 crystal (produced in Novosibirsk and tested at LNGS)
- Calibrated with beta/gamma sources and neutron source
- Great crystal performance
 - → feasiblity of array

(Previously measured also by https://doi.org/10.1016/j.nima.2019.162784)

First tests with Li₂WO₄ crystal

- 500 eV threshold: not immediately compliant with our purpouse, yet it came from an NTD based detector
- Feasibility of large mass (25 g) Li2WO4 dual readout

- The detector (LWO+NTD and LD) was calibrated with a Th source (gamma) and a Am:Be source
- Energy resolution: 900 eV @ 59 keV
- Next step: LWO+TES to push threshold below 50 eV

Conclusions

- Measuring CEvNS from EC source less crazy than we naively expected
- Li could allow for precision measurement, and to perform differential measurement of v flux
- CEvNS on Li-based bolometer allows independent test of Gallium neutrino anomaly

Contributions:

- G. Benato, F. Pofi, C. Ternes: CEvNS and Ga calculations
- A. Melchiorre, A. Puiu: LiWO measurement

Backup: Low-energy excess

- CRESST bkg above 250 eV: ~0.01 counts/eV/kg/day
 →In line with our requirements of <0.02 counts/eV/kg/day
- CRESST bkg in low-E excess region: 1-10 counts/eV/kg/day
 - →Must solve in order to enable any CEvNS measurement!

