

The Status and Perspectives of Giant Radio Array for Neutrino Detection (GRAND)

Guo-yuan Huang (黄国远)

China University of Geosciences (Wuhan) on behalf of the GRAND Collaboration

Collaboration

16 Member & Associate Institutes represented at the Board

- Purple Mountain Observatory (PMO)
- National Astronomical Observatories (NAOC)
- Xidian University
- Nanjing University
- China University of Geosciences (Wuhan)

- Hellenic Open University (HOU)
- Institut d'astrophysique de Paris (IAP)
- Institute of Physics of the Czech Academy of Sciences (FZU)
- Inter-University Institute for High Energy at Vrije Universiteit Brussel (IIHE-VUB)
- Karlsruhe Institute of Technology (KIT)
- Laboratoire de Physique Nucléaire et des Hautes Energies (LPNHE)
- Laboratoire Univers et Particules de Montpellier (LUPM)
- Radboud University
- University of Warsaw

- Pennsylvania State University (PSU)
- San Francisco State University (SFSU)

Universidade Federal do Rio de Janeiro (UFRJ)

119 members 16 countries: Argentina, Belgium, Brazil, China, Czech Republic, Denmark, France, Germany, Greece, Japan, Nepal, Netherlands, Norway, Poland, Spain, USA

GRAND Collaboration Meeting @ PMO, Nanjing, China - May 2024

Cosmic Rays and Neutrinos

- 1) UHE CR tracing: deflected by magnetic field. the GZK horizon
- 2) UHE Gamma rays: Interaction with the CMB. They cascade down to low energy.
- 3) **UHE neutrinos:** Universe transparent, beyond the GZK horizon, difficult for detection.

UHE Neutrinos

- IceCube first detected the high- energy neutrinos of extraterrestrial origin in 2013.
- Hard to identify neutrino sources due to the limited sensitivity and angular resolution.
- Origin of the 220 PeV event of KM3NeT is not yet identified.

UHE Neutrinos

•
$$p + \gamma_{\text{CMB}} \to \Delta^+(1232) \to p + \pi^0 (\text{or } n + \pi^+) (p_p + p_{\gamma})^2 > (M_n + M_{\pi})^2$$

• $\pi \to \nu + ...$ $E_{\nu} \approx 0$ (1 EeV) COM energy is only 1 GeV

CR+CMB (CIB) = Guaranteed EeV neutrino flux

V. S. Berezinsky, G. T. Zatsepin, PLB 28 (1969) 423

Radio Detection

Image of an air shower using radio signals, LOPES, Nature 435 (2005) 313

Xmax with high precision, 16 g/cm², LOFAR, Nature 531 (2016) 70

Radio Detection

- Frequency range: 50-200 MHz (C-ring)
- Transient pulses, duration: <~ 100 ns
- Amplitude of detectable signals at unit level:
 3-5 above stationary Galactic background
- Amplitude scales linearly with particle energy
- Self-triggered is made possible
- Paves the way for GRAND

The Cherenkov ring becomes more significant with >50MHz

GRAND Concept

Science Case

- 1) Radio astronomy (early stages)
- full-sky survey of radio signals
- FRBs and giant radio pulses from Crab with GP300
- 2) UHECRs (intermediate stages)
- GP300: transition from galactic to extragalactic
- hadronic physics: muon discrepancy, UHECR mass composition, p-air xsec
- 3) Neutrinos, gamma (advanced stages)
- Cosmogenic neutrino and gamma flux
- Neutrino astronomy at EeV
- Competitive with Auger at GP300 stage
- 4) Neutrino physics (advanced stages)
- nu Xsec at EeV
- new physics effect

Expected Sensitivity for Neutrinos

- With 200k antennas, GRAND can achieve an unpredented sensitivity to diffuse neutrino flux @ EeV.
- For usual flux models, the rate can read1-18 event per year.

Expected Sensitivity for CR and Gamma

- The site is assumed at latitude 43.
- The final setup of GRAND200K with 20 sites will have a much wider coverage

Timeline

	Prototyping	GRAND10k North/South	GRAND200k
	2023 20)28	203X
	autonomous radio detection of very inclined air-showers	1st GRAND sub-arrays	sensitive all-sky detector
Goals	cosmic rays 10 ^{16.5-18} eV • Galactic/extragalactic transition • muon problem • radio transients GRID Proto300	 discovery of EeV neutrinos for optimistic fluxes radio transients (FRBs!) 	1st EeV neutrino detection and/or neutrino astronomy!
Setup	 GRAND@Nançay: 4 antennas for trigger testing GRAND@Auger: 10 antennas for cross-calibration GRANDProto300: 300 HorizonAntennas over 200 km² 	• 10,000 radio antennas over 10,000 km²	 200,000 antennas over 200,000 km² 20 sub-arrays of 10k antennas on different continents
Budget	2 M€ 100 antennas produced funded by China + Radboud University + ANR-DFG PRCI NUTRIG (France-Germany) + CNRS INSU (IAP, MITI)	13 M€ 1500€/unit	300M€ in total 500€/unit to be divided between participating countries

Detector

For more on the prototype technology, please check Sei Kato's talk @

Wifi antenna

Solar panels

Electronics:

50-200 MHz analog filtering, 500 MS/s sampling FPGA+CPU

Bullet WiFi data transfer

Collect and transfer data

Operate the 2nd level

trigger

Highly efficient along the horizontal direction

Placed 3.5 meters above the ground to minimize diffraction

Possible Background

Prototypes

Commissioning phase

Deployment on 3 sites and first experimental data obtained!

GRAND@Nançay

- Hosted at the Nançay Radio Observatory,
 France, 4 DUs have been deployed.
- Test bench for triggering and hardware
- Antennas were shipped from China and the rest of the equipment was funded by the ANR- DFG grant between Paris (LPNHE and IAP) and Karlsruhe (KIT)

GRAND@Auger

- 10 antennas deployed
- Auger mechanical structure + infrastructure
- Cross-calibration with Auger detectors
- Hardware tests, Firmware tests
- Online coincidence search at central DAQ (L3 triggering)
- ~ 1 event/day expected

GRAND@Auger

GRANDProto300 (GP300)

Aims to validate the GRAND as a **standalone** radio detection array

- Realize the self-trigger techniques; test bench for further GRAND stages
- Algorithm for angular, energy and mass composition reconstruction;
- Detection of very inclined cosmic rays with energies from 30 PeV to 1 EeV;
- Study CRs in the galactic to extragalactic transition energy range.

A 300-antenna pathfinder stage of GRAND

• 200 km² area;

GP300 Location

敦煌市自然资源局文件

敦自然资发[2024]23号

敦煌市自然资源局 关于大型中微子射电观测站二期子阵项目用地 准予备案的通知

中国科学院紫金山天文台: GP300, 10 years

参照原国土资源部、发展改革委等部委《关于支持新产业新业态发展促进大众创业万众创新用地的意见》(国土资规 [2015]5 号)相关规定,经上报市政府批准,现准予你单位以现状备案方式使用我市北山小独山区域 2396 平方米国有土地,用于大型中微子射电观测站二期子阵项目建设,备案期限为 10 年,你单位在用地期间不得压占、硬化土地,不得改变地表形态,须严格按照设计标准施工,坚决杜绝随意变动。你单位在使用备案土地过程中,不得影响区域内及周边正常通行,不得影响和干扰区域内及周边新能源项目建设、矿产资源勘查开采等活动,如遇以上情况

GP300 Construction

GP300 Science

20

Using the Autonomous Radio-detection technique, we have already identified ~40 CR candidates with successful reconstruction in the commissioning phase.

GP300 Animals

Summary

GRAND key features:

- ★ One of the largest UHE neutrino observatories: excellent sensitivity, large FoV, 0.1 degree angular resolution
- ★ Scalable design using radio antennas with autonomous triggering
- ★ Rich science case: radio astronomy; UHE cosmic rays; UHE neutrinos@EeV; UHE gamma rays

Prototype Stage:

- Three Prototypes: GRAND@Nançay, GRAND@Auger, GRANDProto300
- 65 antennas were deployed at GP300
- Radio astronomy and cosmic rays with GP300

