

Search for keV-Scale Sterile Neutrinos via ³H Beta Decay in LiF Crystals

Yong-Chang Lee, Jeong-Yeol Yang, Yong-Hamb Kim

Presenter: Kyung-Rae Woo

Center for Underground Physics
Institute for Basic Science

Motivation for keV-scale Sterile Neutrino Searches

- Neutrino oscillations → Beyond Standard Model physics
 - Suggest existence of sterile neutrinos
- Cosmological production (Dodelson–Widrow, Shi–Fuller, ...)
 - keV sterile neutrinos are Dark Matter candidates
- X-ray observations

but depend on cosmological models

$$\begin{array}{c}
\stackrel{V}{\longrightarrow} \stackrel{U_e}{\longrightarrow} \stackrel{e^{\mp}}{\longrightarrow} \stackrel{V^{\gamma}}{\longrightarrow} \\
\stackrel{V_e}{\longrightarrow} \stackrel{V_e}{\longrightarrow} \stackrel{V_e}{\longrightarrow} \\
\end{array}$$

$$\sin^2(2\theta) < \mathcal{O}(10^{-10})$$

Model-independent search for a sterile neutrino emission branch in beta decay

3 H β -decay Spectrum with sterile ν emission

• Sterile neutrino (v_s) feebly mixing with active neutrino (v_e)

$$\begin{pmatrix} v_e \\ v_s \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} v_{\text{light}} \\ v_{\text{heavy}} \end{pmatrix}$$

$$\frac{d\Gamma_{\text{tot}}}{dE} (E_e; m_{\text{light}}, m_{\text{heavy}})$$

$$= \cos^2 \theta \frac{d\Gamma}{dE} (E_e; m_{\text{light}}) + \sin^2 \theta \frac{d\Gamma}{dE} (E_e; m_{\text{heavy}})$$

- β -decay spectrum for ν_{heavy} is added to that for ν_{light} with angle normalization factor.
- Non-differentiable point at $Q m_s$

G: Thermal conductance

C: Heat capacity

M : Magnetization

 $\delta\Phi$: Magnetic flux

T: Temperature

Low Temperature Detector (LTD) Magnetic MicroCalorimeters (MMC)

 δE

- Paramagnetic alloy in a magnetic field
- Au:Er, Ag:Er (300-1000 ppm)
- Metal host Fast thermalization
- High resolution
- Good linearity
- Large dynamic range

$$C_a$$
 C_s C_s

 $\delta E \rightarrow \delta T \rightarrow \delta M \rightarrow \delta \Phi$

$$\delta \Phi \propto \frac{\partial M}{\partial T} \frac{\delta E}{C_{tot}}$$

³H Production in LiF Cubic Crystals Mean free path: 2.3 mm in LiF with 7.6 % ⁶Li

Neutron irradiation at KRISS Week exposure $\rightarrow \sim 20$ Bq in a LiF

Institute for Bas209m bine

Surface issues (³H distribution and energy loss) [§]

- ✓ Non-uniform ³H distribution in 1×1×1 cm³ LiF
- Expected from neutron capture and beta decay simulations
- Mean free path of thermal neutron in LiF: 2.3 mm
- Stopping range of 2.7 MeV 3 H in LiF: $\sim 33 \mu m$
- ✓ Possible energy loss of decay energy other than neutrino
- MC simulation includes surface escapes of electrons and bremsstrahlung X-ray
- Stopping range of 18 keV β^- in LiF $\sim 0.5 \mu m$

These effects are well understood from MC simulation and accounted for in the analysis.

Detector Performance Basics (Before neutron activation)

Measurement with internal ⁵⁵Fe and ²⁴¹Am calibration sources

- Backgound measurement
- ➤ All the peaks are clearly identified.
- > Excellent linearity in energy calibration
- > Excellent energy resolution (0.2~0.4 keV FWHM) in the ROI

Calibration (Energy + Position)

Simulated positions of 5.9 keV X-ray events (Mn K_{α}) absorbed in the LiF crystal from various ⁵⁵Fe source locations used in Exp. 2–10.

0.998 0	10	20	30 energy (k	40	50	60
	ф					
1						- n
1.002		Ψ,	T#			
1.004						
	₩ ®		L	▽ ⁵⁵ F	e: Bottom	-2
1.006	Φ:			▽ ⁵⁵ F	e: Bottom	-1
b				o 55 _F	e: Side-1 2 e: Side-3	2
1.008	4			△ ⁵⁵ F	e: Top-3	
				△ ⁵⁵ F	e: Top-2	
1.01				△ 55 _F	e: Top-1	
1.054				□ 241	Am: Exp 2 Am: Exp 1	2-9 10
1.055	4				for E > 13 Am: Exp 2	

Exp.		Refrigerator	Calibration sources
1		DR	⁵⁵ Fe, ²⁴¹ Am with Ag collimator
2–9		ADR	⁵⁵ Fe, ²⁴¹ Am with Ag collimator
10		ADR	⁵⁵ Fe, ²⁴¹ Am with Cu collimator
11 ^a	Calibration	DR	⁵⁵ Fe, (Ag, W) ^b
	β -spectrum	DR	⁵⁵ Fe

^a Exp. 11 was carried out after neutron activation.

^b Characteristic X-rays of Ag and W could be activated from external γ sources during the calibration run.

 $Amp = (Position fuction)(\alpha E^2 + \beta E)$

- Each calibration peak corresponds to the energy and position of the events in the crystal.
- Calibration measurements were carried out in various source locations (55Fe and 241Am) for 21 event sets for energy-position calibrations.

LiFE-SNS Phase1: two setups (After neutron activation)

- The setups are attached to a dry DR surrounded by a Pb shield at the Daejeon IBS HQ lab. (Above-ground)
- Two detector modules: LiF(3H) + MMC with 30 Bq and 39 Bq
- An internal ⁵⁵Fe source is employed on each crystal.
- Two-stage temperature control system with $\Delta T_{rms} \sim 0.5 \ \mu K$
- Data taking period: May~Dec/2024

Two weeks calibration run with ³H in LiF

After neutron irradiation, internal ⁵⁵Fe + X-ray fluorescence

- Metal plates of (Ag, W on s.c. shield)
- Activated by external gamma sources
- ⁵⁵Fe(5.9, 6.5 keV): On
- Ag(22 keV, 25 keV), W(59 keV), Pb(75 keV): On and Off

Energy calibration result (After neutron activation)

Position dependence correction

Measured(source)
* Position(source)
Others(source)
Others(³H)
Position(³H)
Expected(³H)

Expected(³H)

Others(source)

Normalized to the expected amplitude for the 22.16 keV Ag K_{α} template

- Reasonable linearity and resolution are found.
- The calibration with the position correction function works for calibration lines.
- Systematic error from energy calibration and resolution is not dominant over the statistical error with $10^9\,\beta$ events.

Theoretical ³H spectrum

- ✓ Energy deposit in LiF: $E_{deposit} = E_{\beta^-} + E_{Recoil} + E_{Deexcitation} + E_{neutralization} = Q E_{\nu}$ 24.5873(1+), 79.0052(2+) eV
- ✓ Theoretical expectations are well-studied.
- Relativistic ³H β spectrum including V-A, Weak magnetism current

$$\label{eq:mass_equation} M = \frac{G_F V_{ud}}{\sqrt{2}} \; \bar{\boldsymbol{u}}(\boldsymbol{P}_e) \gamma_\alpha (1 - \gamma_5) \nu(\boldsymbol{P}_\nu) \bar{\boldsymbol{u}}(\boldsymbol{p}_f) \\ \left[G_V(\boldsymbol{q}^2) + \frac{i G_M(\boldsymbol{q}^2)}{2 M_N} \sigma^{\alpha\beta} \boldsymbol{q}_\beta \; - G_A(\boldsymbol{q}^2) \gamma^\alpha \gamma_5 \right] \boldsymbol{u}(\boldsymbol{p}_i)$$

- Fermi function, Recoiled coulomb potential, Finite nuclear size correction, Screened Coulomb correction
- Radiative correction
- Spectral shape is determined by initial and final atomic states Transition probability accounting for exchange effect between β^- and electron (bound).

$$^3H^0 \rightarrow \nu + \beta^- + ^3He^+ +$$
 neutralization : many He $^+$ states from $n=1{\sim}30$ $^3H^0 \rightarrow \nu + \beta^- + ^3He^{2+} + e^- +$ neutralization : He $^{2+}$ continuum

Refs: PRC 77, 055502 (2008), PRC 76, 045501 (2007), JCAP08(2014)038, JHEP 2016, 40 (2016), RMP. 90, 015008 (2018), JCAP02(2015)020, JHEP 2023, 144 (2023)

- √ ³H states in LiF (Solid state effect)
- Kazumata, Journal of the Physical Society of Japan 35(5), 1442 (1973):

Tritiums in LiF may occupy interstitial lattice sites

 Quantum hybridization of the atomic orbitals should be considered between ³H and the surrounding atoms (Li and F), requiring further theoretical modeling. AMP: Amplitude of the signal, proportional to the deposited energy for Basic Science

 δt : Time interval between signals

RMS: Difference in shape between the measured and the reference signal (Template)

Analysis method

$$RMS = \sqrt{\frac{\sum_{n=1}^{N} (S_n - AMP \cdot T_n)^2}{N}}$$

S: The signal in time series

T: Template signal in time series

N: Number of bins in analysis window

- Noise
- Template
- Expected distribution
- Event rate

3 H β decay spectrum fit: Using one week (7 days) of one channel

- \checkmark $\chi^2/NDF = 308.6/314$ in the analysis range 1~17 keV
 - Good agreement between the measured and expected values.
 - → We can activate the routine for sterile branch search.

We included

- ³H distribution in the LiF crystal
- Position calibration function
- One channel 7-day data(~1/30 of the measured data)

Exclusion limit with 1-ch 7-day data

The null hypothesis is preferred.

The exclusion limit with 1-ch 7-day data reaches to a $\sin^2\theta$ sensitivity of 10^{-3} in the 10 keV region, comparable to the current best limits.

Expected limit (LiFE-SNS)

2024 measurement: LiFE-SNS Phase 1

- 2 detectors \times 35 Bq \times 4 month: 0.8 B β events
- Aboveground measurement
- $\sin^2\theta$ sensitivity:
 - $\sim 10^{-3}$ found with only 1/30 data
- $\sim 2\times 10^{-4}$ expected (analysis result will come soon)
 - Most stringent limit near 10 keV region
 - Further systematics are being investigated

LiFE-SNS Phase 2

- When low systematic error is confirmed.
- 100 detectors \times 100 Bq \times 1 year
- $\sin^2\theta$ sensitivity: $\sim 7 \times 10^{-6}$
- Underground measurement

Stay tuned for the signal from LiFE-SNS

Summary LiFE-SNS

- The precise spectrum of 3 H β decays measured in LiFE-SNS provides a suitable tool to investigate sterile ν 's.
- The Phase-1 measurement was finished for 2ch×35 Bq×4 months.
 - A preliminary analysis shows **a good agreement** between the measured and expected spectra.
 - \triangleright This analysis results in a $\sin^2\theta$ sensitivity of 10^{-3} found with 1-ch 7-day data.
 - \triangleright A complete analysis will have **an expected sensitivity of ~10**⁻⁴, which would be **the most stringent limit** of sterile neutrino search **near** m_s **~ 10 keV.**
- Phase-2, with 100 channels, is being considered.

Stay tuned to LiFE-SNS