Search for keV-Scale Sterile Neutrinos via ³H Beta Decay in LiF Crystals Yong-Chang Lee, Jeong-Yeol Yang, Yong-Hamb Kim **Presenter: Kyung-Rae Woo** Center for Underground Physics Institute for Basic Science ### Motivation for keV-scale Sterile Neutrino Searches - Neutrino oscillations → Beyond Standard Model physics - Suggest existence of sterile neutrinos - Cosmological production (Dodelson–Widrow, Shi–Fuller, ...) - keV sterile neutrinos are Dark Matter candidates - X-ray observations but depend on cosmological models $$\begin{array}{c} \stackrel{V}{\longrightarrow} \stackrel{U_e}{\longrightarrow} \stackrel{e^{\mp}}{\longrightarrow} \stackrel{V^{\gamma}}{\longrightarrow} \\ \stackrel{V_e}{\longrightarrow} \stackrel{V_e}{\longrightarrow} \stackrel{V_e}{\longrightarrow} \\ \end{array}$$ $$\sin^2(2\theta) < \mathcal{O}(10^{-10})$$ Model-independent search for a sterile neutrino emission branch in beta decay ## 3 H β -decay Spectrum with sterile ν emission • Sterile neutrino (v_s) feebly mixing with active neutrino (v_e) $$\begin{pmatrix} v_e \\ v_s \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} v_{\text{light}} \\ v_{\text{heavy}} \end{pmatrix}$$ $$\frac{d\Gamma_{\text{tot}}}{dE} (E_e; m_{\text{light}}, m_{\text{heavy}})$$ $$= \cos^2 \theta \frac{d\Gamma}{dE} (E_e; m_{\text{light}}) + \sin^2 \theta \frac{d\Gamma}{dE} (E_e; m_{\text{heavy}})$$ - β -decay spectrum for ν_{heavy} is added to that for ν_{light} with angle normalization factor. - Non-differentiable point at $Q m_s$ G: Thermal conductance C: Heat capacity *M* : Magnetization $\delta\Phi$: Magnetic flux T: Temperature ## Low Temperature Detector (LTD) Magnetic MicroCalorimeters (MMC) δE - Paramagnetic alloy in a magnetic field - Au:Er, Ag:Er (300-1000 ppm) - Metal host Fast thermalization - High resolution - Good linearity - Large dynamic range $$C_a$$ C_s $\delta E \rightarrow \delta T \rightarrow \delta M \rightarrow \delta \Phi$ $$\delta \Phi \propto \frac{\partial M}{\partial T} \frac{\delta E}{C_{tot}}$$ ## ³H Production in LiF Cubic Crystals Mean free path: 2.3 mm in LiF with 7.6 % ⁶Li Neutron irradiation at KRISS Week exposure $\rightarrow \sim 20$ Bq in a LiF #### Institute for Bas209m bine # Surface issues (³H distribution and energy loss) [§] - ✓ Non-uniform ³H distribution in 1×1×1 cm³ LiF - Expected from neutron capture and beta decay simulations - Mean free path of thermal neutron in LiF: 2.3 mm - Stopping range of 2.7 MeV 3 H in LiF: $\sim 33 \mu m$ - ✓ Possible energy loss of decay energy other than neutrino - MC simulation includes surface escapes of electrons and bremsstrahlung X-ray - Stopping range of 18 keV β^- in LiF $\sim 0.5 \mu m$ These effects are well understood from MC simulation and accounted for in the analysis. ### Detector Performance Basics (Before neutron activation) Measurement with internal ⁵⁵Fe and ²⁴¹Am calibration sources - Backgound measurement - ➤ All the peaks are clearly identified. - > Excellent linearity in energy calibration - > Excellent energy resolution (0.2~0.4 keV FWHM) in the ROI ## Calibration (Energy + Position) Simulated positions of 5.9 keV X-ray events (Mn K_{α}) absorbed in the LiF crystal from various ⁵⁵Fe source locations used in Exp. 2–10. | 0.998 0 | 10 | 20 | 30
energy (k | 40 | 50 | 60 | |---------|-----|----|-----------------|-------------------|--------------------------|-----------| | | ф | | | | | | | 1 | | | | | | - n | | 1.002 | | Ψ, | T# | | | | | 1.004 | | | | | | | | | ₩ ® | | L | ▽ ⁵⁵ F | e: Bottom | -2 | | 1.006 | Φ: | | | ▽ ⁵⁵ F | e: Bottom | -1 | | b | | | | o 55 _F | e: Side-1 2
e: Side-3 | 2 | | 1.008 | 4 | | | △ ⁵⁵ F | e: Top-3 | | | | | | | △ ⁵⁵ F | e: Top-2 | | | 1.01 | | | | △ 55 _F | e: Top-1 | | | 1.054 | | | | □ 241 | Am: Exp 2
Am: Exp 1 | 2-9
10 | | 1.055 | 4 | | | | for E > 13
Am: Exp 2 | | | Exp. | | Refrigerator | Calibration sources | |-----------------|-------------------|--------------|--| | 1 | | DR | ⁵⁵ Fe, ²⁴¹ Am with Ag collimator | | 2–9 | | ADR | ⁵⁵ Fe, ²⁴¹ Am with Ag collimator | | 10 | | ADR | ⁵⁵ Fe, ²⁴¹ Am with Cu collimator | | 11 ^a | Calibration | DR | ⁵⁵ Fe, (Ag, W) ^b | | | β -spectrum | DR | ⁵⁵ Fe | ^a Exp. 11 was carried out after neutron activation. ^b Characteristic X-rays of Ag and W could be activated from external γ sources during the calibration run. $Amp = (Position fuction)(\alpha E^2 + \beta E)$ - Each calibration peak corresponds to the energy and position of the events in the crystal. - Calibration measurements were carried out in various source locations (55Fe and 241Am) for 21 event sets for energy-position calibrations. ### LiFE-SNS Phase1: two setups (After neutron activation) - The setups are attached to a dry DR surrounded by a Pb shield at the Daejeon IBS HQ lab. (Above-ground) - Two detector modules: LiF(3H) + MMC with 30 Bq and 39 Bq - An internal ⁵⁵Fe source is employed on each crystal. - Two-stage temperature control system with $\Delta T_{rms} \sim 0.5 \ \mu K$ - Data taking period: May~Dec/2024 #### Two weeks calibration run with ³H in LiF After neutron irradiation, internal ⁵⁵Fe + X-ray fluorescence - Metal plates of (Ag, W on s.c. shield) - Activated by external gamma sources - ⁵⁵Fe(5.9, 6.5 keV): On - Ag(22 keV, 25 keV), W(59 keV), Pb(75 keV): On and Off ## Energy calibration result (After neutron activation) #### Position dependence correction Measured(source) * Position(source) Others(source) Others(³H) Position(³H) Expected(³H) Expected(³H) Others(source) Normalized to the expected amplitude for the 22.16 keV Ag K_{α} template - Reasonable linearity and resolution are found. - The calibration with the position correction function works for calibration lines. - Systematic error from energy calibration and resolution is not dominant over the statistical error with $10^9\,\beta$ events. ## Theoretical ³H spectrum - ✓ Energy deposit in LiF: $E_{deposit} = E_{\beta^-} + E_{Recoil} + E_{Deexcitation} + E_{neutralization} = Q E_{\nu}$ 24.5873(1+), 79.0052(2+) eV - ✓ Theoretical expectations are well-studied. - Relativistic ³H β spectrum including V-A, Weak magnetism current $$\label{eq:mass_equation} M = \frac{G_F V_{ud}}{\sqrt{2}} \; \bar{\boldsymbol{u}}(\boldsymbol{P}_e) \gamma_\alpha (1 - \gamma_5) \nu(\boldsymbol{P}_\nu) \bar{\boldsymbol{u}}(\boldsymbol{p}_f) \\ \left[G_V(\boldsymbol{q}^2) + \frac{i G_M(\boldsymbol{q}^2)}{2 M_N} \sigma^{\alpha\beta} \boldsymbol{q}_\beta \; - G_A(\boldsymbol{q}^2) \gamma^\alpha \gamma_5 \right] \boldsymbol{u}(\boldsymbol{p}_i)$$ - Fermi function, Recoiled coulomb potential, Finite nuclear size correction, Screened Coulomb correction - Radiative correction - Spectral shape is determined by initial and final atomic states Transition probability accounting for exchange effect between β^- and electron (bound). $$^3H^0 \rightarrow \nu + \beta^- + ^3He^+ +$$ neutralization : many He $^+$ states from $n=1{\sim}30$ $^3H^0 \rightarrow \nu + \beta^- + ^3He^{2+} + e^- +$ neutralization : He $^{2+}$ continuum Refs: PRC 77, 055502 (2008), PRC 76, 045501 (2007), JCAP08(2014)038, JHEP 2016, 40 (2016), RMP. 90, 015008 (2018), JCAP02(2015)020, JHEP 2023, 144 (2023) - √ ³H states in LiF (Solid state effect) - Kazumata, Journal of the Physical Society of Japan 35(5), 1442 (1973): Tritiums in LiF may occupy interstitial lattice sites Quantum hybridization of the atomic orbitals should be considered between ³H and the surrounding atoms (Li and F), requiring further theoretical modeling. AMP: Amplitude of the signal, proportional to the deposited energy for Basic Science δt : Time interval between signals *RMS*: Difference in shape between the measured and the reference signal (Template) ## Analysis method $$RMS = \sqrt{\frac{\sum_{n=1}^{N} (S_n - AMP \cdot T_n)^2}{N}}$$ S: The signal in time series T: Template signal in time series N: Number of bins in analysis window - Noise - Template - Expected distribution - Event rate # 3 H β decay spectrum fit: Using one week (7 days) of one channel - \checkmark $\chi^2/NDF = 308.6/314$ in the analysis range 1~17 keV - Good agreement between the measured and expected values. - → We can activate the routine for sterile branch search. #### We included - ³H distribution in the LiF crystal - Position calibration function - One channel 7-day data(~1/30 of the measured data) ## Exclusion limit with 1-ch 7-day data #### The null hypothesis is preferred. The exclusion limit with 1-ch 7-day data reaches to a $\sin^2\theta$ sensitivity of 10^{-3} in the 10 keV region, comparable to the current best limits. ## Expected limit (LiFE-SNS) #### 2024 measurement: LiFE-SNS Phase 1 - 2 detectors \times 35 Bq \times 4 month: 0.8 B β events - Aboveground measurement - $\sin^2\theta$ sensitivity: - $\sim 10^{-3}$ found with only 1/30 data - $\sim 2\times 10^{-4}$ expected (analysis result will come soon) - Most stringent limit near 10 keV region - Further systematics are being investigated #### LiFE-SNS Phase 2 - When low systematic error is confirmed. - 100 detectors \times 100 Bq \times 1 year - $\sin^2\theta$ sensitivity: $\sim 7 \times 10^{-6}$ - Underground measurement Stay tuned for the signal from LiFE-SNS ## **Summary LiFE-SNS** - The precise spectrum of 3 H β decays measured in LiFE-SNS provides a suitable tool to investigate sterile ν 's. - The Phase-1 measurement was finished for 2ch×35 Bq×4 months. - A preliminary analysis shows **a good agreement** between the measured and expected spectra. - \triangleright This analysis results in a $\sin^2\theta$ sensitivity of 10^{-3} found with 1-ch 7-day data. - \triangleright A complete analysis will have **an expected sensitivity of ~10**⁻⁴, which would be **the most stringent limit** of sterile neutrino search **near** m_s **~ 10 keV.** - Phase-2, with 100 channels, is being considered. Stay tuned to LiFE-SNS