The SAND detector of the DUNE experiment

Denise Casazza on behalf of the DUNE collaboration.

The XIX International Conference on Topics in Astroparticle and Underground Physics - TAUP 2025.

Xichang, 24th-30th August 2025.

DUNE main physics goals:

Long baseline neutrino oscillation:

- establish whether nature violates CP in the lepton section and if so measure δ_{CP} ,
- improve accuracy on θ_{23} and determine the octant $\theta_{23} < \pi/4$ vs. $\theta_{23} > \pi/4$,
- determine the neutrino mass ordering at high confidence level.

Astrophysics via MeV-scale ν_{ρ} s at FD:

- supernova pointing and neutrino property measurement via SNB detection,
- solar neutrino measurements of *hep* flux, 8B channel and Δm_{21}^2 .

Beyond Standard Model (Light Dark Matter, proton decay, sterile neutrinos...).

Far Detector:

- 4 modules,1.5 km underground: 3 LArTPCs (17 kton each) + 1 module of opportunity (FD4).
- Horizontal (FD2) and vertical (FD1) technologies.

Near Detector:

 Configuration: ND-LAr, TMS(→ ND-GAr), <u>SAND</u>.

LBNF beam:

- Both neutrino-enriched and antineutrino-enriched configurations.
- Wide-band neutrino beam:
 1.2MW(→2.4MW), peaked at ~
 2.5GeV.

DUNE main physics goals:

Long baseline neutrino oscillation:

- establish whether nature violates CP in the lepton section and if so measure δ_{CP} ,
- improve accuracy on θ_{23} and determine the octant $\theta_{23} < \pi/4$ vs. $\theta_{23} > \pi/4$,
- determine the neutrino mass ordering at high confidence level.

Astrophysics via MeV-scale ν_e s at FD:

- supernova pointing and neutrino property measurement via SNB detection,
- solar neutrino measurements of *hep* flux, 8B channel and Δm_{21}^2 .

Beyond Standard Model (Light Dark Matter, proton decay, sterile neutrinos...).

Far Detector:

- 4 modules,1.5 km underground: 3 LArTPCs (17 kton each) + 1 module of opportunity (FD4).
- Horizontal (FD2) and vertical (FD1) technologies.

Near Detector:

 Configuration: ND-LAr, TMS(→ ND-GAr), <u>SAND</u>.

LBNF beam:

- Both neutrino-enriched and antineutrino-enriched configurations.
- Wide-band neutrino beam:
 1.2MW(→2.4MW), peaked at ~
 2.5GeV.

SANFORD UNDERGROUND
RESEARCH FACILITY

800 miles
(1300 kilometers)

NEUTRINO
PRODUCTION
NEAR DETECTOR

EXISTING
LABS

DUNE main physics goals:

Long baseline neutrino oscillation:

- establish whether nature violates CP in the lepton section and if so measure δ_{CP} ,
- improve accuracy on θ_{23} and determine the octant $\theta_{23} < \pi/4$ vs. $\theta_{23} > \pi/4$,
- determine the neutrino mass ordering at high confidence level.

Astrophysics via MeV-scale ν_e s at FD:

- supernova pointing and neutrino property measurement via SNB detection,
- solar neutrino measurements of hep flux, 8B channel and Δm_{21}^2 .

Beyond Standard Model (Light Dark Matter, proton decay, sterile neutrinos...).

Far Detector:

- 4 modules,1.5 km underground: 3 LArTPCs (17 kton each) + 1 module of opportunity (FD4).
- Horizontal (FD2) and vertical (FD1) technologies.

Near Detector:

 Configuration: ND-LAr, TMS(→ ND-GAr), <u>SAND</u>.

LBNF beam:

- Both neutrino-enriched and antineutrino-enriched configurations.
- Wide-band neutrino beam:
 1.2MW(→2.4MW), peaked at ~
 2.5GeV.

SANFORD UNDERGROUND
RESEARCH FACILITY

800 miles
(1300 kilometers)
NEUTRINO
PRODUCTION
NEAR DETECTOR
EXISTING
LABS

DUNE main physics goals:

Long baseline neutrino oscillation:

- establish whether nature violates CP in the lepton section and if so measure δ_{CP} ,
- improve accuracy on θ_{23} and determine the octant $\theta_{23} < \pi/4 \text{ vs. } \theta_{23} > \pi/4,$
- determine the neutrino mass ordering at high confidence level.

Astrophysics via MeV-scale ν_e s at FD:

- supernova pointing and neutrino property measurement via SNB detection,
- solar neutrino measurements of hep flux, 8B channel and Δm_{21}^2 .

Beyond Standard Model (Light Dark Matter, proton decay, sterile neutrinos...).

Far Detector:

- 4 modules, 1.5 km underground: 3 LArTPCs (17 kton each) + 1 module of opportunity (FD4).
- Horizontal (FD2) and vertical (FD1) technologies.

See Luis's talk!

Near Detector:

 Configuration: ND-LAr, TMS(→ ND-GAr), SAND.

LBNF beam:

- Both neutrino-enriched and antineutrino-enriched configurations.
- Wide-band neutrino beam: 1.2MW(\rightarrow 2.4MW), peaked at \sim 2.5GeV.

SANFORD UNDERGROUND **FERMILAB** RESEARCH FACILITY PRODUCTION **NEAR DETECTOR**

FAR DETECTOR

Near detector complex

The DUNE near detector 574 m downstream the beam target and 60 m underground will have three components:

- **ND-LAr**: 67 ton liquid argon TPC based with pixelated readout coupled with:
 - ► TMS (phase I): muon spectrometer,
 - ► ND-GAr (phase II): magnetised high pressure gaseous argon TPC surrounded by an ECal.
- **SAND:** On-axis magnetised detector with LAr active target, a low-density tracker and an ECal.

DUNE-PRISM: up to 28.5 m off-axis movable system composed of ND-LAr+TMS/ND-GAr to scan different neutrino energies.

Near detector complex

The DUNE near detector 574 m downstream the beam target and 60 m underground will have three components:

- ND-LAr: 67 ton liquid argon TPC based with pixelated readout coupled with:
 - TMS (phase I): muon spectrometer,
 - ► ND-GAr (phase II): magnetised high pressure gaseous argon TPC surrounded by an ECal.
- SAND: On-axis magnetised detector with LAr active target, a low-density tracker and an ECal.

DUNE-PRISM: up to 28.5 m off-axis movable system composed of ND-LAr+TMS/ND-GAr to scan different neutrino energies.

The DUNE near detector role:

- Measure the ND beam rate spectrum before oscillation for the prediction at FD.

$$\boxed{N_{ND}^{\nu_{\mu}}(\textbf{p}_{reco}) = \sum_{i} \Phi_{\nu_{\mu}}(E_{true}) \cdot \sigma_{\nu_{\mu}}^{i}(\textbf{p}_{true}) \cdot \varepsilon_{\nu_{\mu}}(\textbf{p}_{true}) \cdot R_{i}(\textbf{p}_{true}; \textbf{p}_{reco})}_{i \text{ = interaction, } p \text{ = } (E, \vec{p})}$$

- Measure the flux at ND.
- Constrain systematic uncertainties measuring cross sections, detector response and efficiency.
- Independent physics programme for cross sections and BSM.

$$N_{FD}^{\nu_{\mu} \to \beta}(\mathbf{p}_{reco}) = \sum_{i} \Phi_{\nu_{\mu}}(E_{true}) \cdot P_{\nu_{\mu}\beta}(E_{true}) \cdot \sigma_{\beta}^{i}(\mathbf{p}_{true}) \cdot \epsilon_{\beta}(\mathbf{p}_{true}) \cdot R_{i}(\mathbf{p}_{true}; \mathbf{p}_{reco})$$

$$i = \text{interaction}, \ \beta = \nu_{\mu}, \nu_{e}, \ p = (E, \vec{p})$$

SAND in a nutshell

SAND (System for on-Axis Neutrino Detection) is a multi-purpose detector, permanently on-axis, capable of precision tracking and calorimetry, featuring:

0.6 T superconducting magnet,

KLOE experiment!

electromagnetic calorimeter (ECal),

• GRAIN: a LAr active target (~1 ton), with imaging system.

> STT: a low-density tracker based on Straw Tubes with distributed target mass.

Monitor beam changes continuously with high significance on a weekly basis,

Constrain nuclear effects by using different nuclear targets (Ar, CH2, C) and "solid Hydrogen" technique.

• Perform independent $\nu/\bar{\nu}$ flux measurements

BSM physics program

SAND in a nutshell

SAND (System for on-Axis Neutrino Detection) is a multi-purpose detector, permanently on-axis, capable of precision tracking and calorimetry, featuring:

0.6 T superconducting magnet,

electromagnetic calorimeter (ECal),

 GRAIN: a LAr active target (~1 ton), with imaging system.

 STT: a low-density tracker based on Straw Tubes with distributed target mass.

Monitor beam changes continuously with high significance on a weekly basis,

Constrain nuclear effects by using different nuclear targets (Ar, CH2, C) and "solid Hydrogen" technique.

• Perform independent $\nu/\bar{\nu}$ flux measurements

BSM physics program

The SAND ECal

- $\sim 4\pi$ lead-scintillating fiber longitudinal sampling EM calorimeter.
- 4880 channels (cells) in barrel (24)& two-endcap (32 + 32) modules.
- Each module: $15 X_0$ thick, composed of 200 lead foils 0.5 mm thick, grooved to host fibers + 200 layers of cladded scintillating fibers, 1mm \oslash . 5 layers with a cell granularity $\sim 4.4 \times 4.4 \ cm^2$.
- Singe cell readout at both ends via PMTs.

ENDCAP MODULES

PMT VIEW - single barrel module

"Calibration and performances of the KLOE calorimeter."

"ECAL Overview and performance "

The SAND Straw Tube Tracker

DESIGN:

- Low-density tracker based on 5 mm diameter straw tubes, 84 modules.
- Each module:
 - 1. target material $(1-2\% X_0)$,
 - 2. transition Radiation Detector,
 - 3. four straw tube layers in XXYY configuration.
- Basic configuration: one layer of C (graphite) every nine of CH_2 (polypropylene). Gas mixture: Xe/CO_2 (70 % /30 %) at 1.9 atm.

FEATURES:

- Modular layout with tuneable average density and availability for new targets.
- Accurate reconstruction of kinematics variables: momentum ~ 3.5 %, angular ~ 2 mrad and time ~ 1 ns resolutions,
- Single hit space resolution $< 200 \ \mu m$,
- Particle identification for charged particles via p + dE/dx.

GRAIN: GRanular Argon for Interactions of Neutrinos

LAr active target with an optical readout system that allow particle reconstruction using scintillation light.

- 1-ton LAr target,
- inner cryostat made of steel, operated at 1.5 bar,
- outer vacuum vessel made of composite materials, maintained at $10^{-5}bar$.

Main motivations

- Constraint on systematics for the $\nu-$ Ar cross-section and nuclear effects,
- Complementary Ar target for crosscalibration with other ND detectors.

53 cameras, SiPM matrix 32 x 32 SiPMs, surface $2x2mm^2$.

Coded aperture masks

60 cameras, SiPM matrix 32 x 32 SiPMs, surface $3x3 mm^2$.

DUNE PRELIMINAR

GRAIN: GRanular Argon for Interactions of Neutrinos

LAr active target with an optical readout system that allow particle reconstruction using scintillation light.

Beam monitoring capability

SAND is permanently located on-axis for continuous beam monitoring to:

- track changes in the beam necessitating changes in the beam model,
- diagnose the reasons for unanticipated changes in the beam spectra.

Detecting variations in the energy spectrum and spatial distribution of ν_{μ} -CC events on a weekly

basis $(3.78 \cdot 10^{19} \text{ proton-on-target})$.

$$T = \Delta \chi^2 = \sum_{i=1}^{N} \frac{\left(N_i^{nom} - N_i^{var}\right)^2}{N_i^{nom}}$$

DUNE PRELIMINARY

Beam parameter	1σ variation	$\sqrt{\Delta\chi^2}(E_{\nu}^{\mathrm{true}})$	$\sqrt{\Delta\chi^2}(E_{\nu}^{\rm rec})$
Horn current	+3kA	12.57	9.44
Water layer thickness	$+0.5\mathrm{mm}$	4.69	3.58
Proton target density	+2%	5.28	4.07
Proton beam radius	$+0.1{ m mm}$	4.41	3.53
Proton beam offset X	$+0.45{\rm mm}$	5.11	3.54
Proton beam θ, ϕ	$0.07 \operatorname{mrad} \theta$, 1.57ϕ	0.62	0.28
Proton beam θ	$0.070\mathrm{mrad}$	0.91	0.58
Horn 1 X shift	$+0.5\mathrm{mm}$	4.70	3.42
Horn 1 Y shift	$+0.5\mathrm{mm}$	5.27	3.87
Horn $2 X$ shift	$+0.5\mathrm{mm}$	1.18	0.69
Horn 2 X shift	$+0.5\mathrm{mm}$	1.31	0.77

"A Proposal to Enhance the DUNE Near Detector Complex"

- $\sqrt{\Delta \chi^2} > 3$ for **7 beam parameters**.
- $\sqrt{\Delta \chi^2} > 3$ for beam x-axis direction shifts down to 8.4cm

Solid hydrogen concept

The modular design of the STT offers the opportunity to extract $\bar{\nu}/\nu$ interactions on hydrogen (H) by the subtraction of samples interacting on the polypropylene (CH_2) and graphite (C) targets.

 ν -H interactions are free from nuclear effects and final state interactions.

- 1. **Kinematic variables** can then be used to select interactions using a multi-dimensional likelihood function.
- 2. The **residual** C backgrounds are subtracted with data-driven procedure, thanks to the graphite target.

"A precise determination of (anti)neutrino fluxes with (anti)neutrino-hydrogen interactions."

Use cases:

Cross-section and nuclear effects systematic uncertainties control.

Flux measurements.

Flux measurements

The capability of SAND to identify and reconstruct different types of interactions will enable flux measurements, necessary 0.04 0.035 0.03

0.03

to predict the FD rate.

$$N_{ND}^{\nu_{\mu}}(\mathbf{p}_{reco}) = \sum_{i} \Phi_{\nu_{\mu}}(E_{true}) \cdot \sigma_{\nu_{\mu}}^{i}(\mathbf{p}_{true}) \cdot \epsilon_{\nu_{\mu}}(\mathbf{p}_{true}) \cdot R_{i}(\mathbf{p}_{true}; \mathbf{p}_{reco})$$

$$i = \text{interaction}, p = (E, \vec{p})$$
0.025

Absolute and relative **fluxes** with uncertainties < 1% using $\nu_u p \to \mu^- p \pi^+$ and $\bar{\nu}_u p \to \mu^+ n$ processes on **hydrogen**.

Clean selection with solid H technique

 $R_i(p_{true}; p_{reco})$ without nuclear smearing

Flattening of cross section energy dependence in low energy region

Absolute $\nu e \rightarrow \nu e$ on **STT** and **GRAIN** for FHC and RHC modes.

"A Proposal to enhance the DUNE Near-Detector Complex"

Form Factor Uncertainty

E_{Had} Reconstruction Uncertainty

E_u Scale Uncertainty

CP optimized FHC

2.5

2

3

3.5

4.5

 $E_a\theta^2$ (GeV rad²)

 $\nu < 0.5 \text{ GeV}$

Constrain nuclear effects

Argon targets brings intrinsic limitations in oscillation analysis due to substantial **nuclear effects** which remain folded in $R_i(p_{true}; p_{reco})$.

$$N_{ND}^{\nu_{\mu}}(\mathbf{p}_{reco}) = \sum_{i} \Phi_{\nu_{\mu}}(E_{true}) \cdot \sigma_{\nu_{\mu}}^{i}(\mathbf{p}_{true}) \cdot \epsilon_{\nu_{\mu}}(\mathbf{p}_{true}) \cdot R_{i}(\mathbf{p}_{true}; \mathbf{p}_{reco}) \\ = R_{phys}R_{det}(\mathbf{p}_{true}; \mathbf{p}_{reco}) \\ \text{1% on H} \quad \text{Meas on H} \quad R_{phys} = 1 \text{ on H, } R_{det} \text{ calibrated}$$

- $\quad \quad \sigma^i_{\nu_\mu}(\mathbf{p}_{true}) \cdot R_{phys}(\mathbf{p}_{true};\mathbf{p}_{reco}) \text{ on Ar can be constrained from Ar H comparison.}$
- Results can then be compared with similar analyses of different targets in STT.

Conclusions

- DUNE will address exciting neutrino physics open questions with the conjunct work of near and far detectors.
- SAND sub-detectors in combination with the other ND allows for high resolution particle identification and reconstruction for neutrino interactions.
- SAND is an excellent beam monitor for changes that would impact long-baseline measurements.
- Solid Hydrogen measurements will allow for a significant reduction of the systematics due to neutrino-nucleus interactions.
- SAND will perform complementary measurements of both the normalisation and energy dependence of the flux.

Thank you for your attention!

