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Liquid Scintillator Detectors
• Liquid scintillator detectors have become crucial in neutrino physics due to their

cost-effectiveness and high precision.
• Close successive events (14C coincidence, 212Bi212Po) will pile up within the 1 µs

time window.
• We explore multi-site reconstruction algorithm to address it.

Figure: Schematic layout of hall A at CJPL-I
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Pile up within the same time window
• The PEs from different vertices overlap in the same time window.
• The waveform analysis method FSMP (arxiv: 2403.03156) is developed to

reconstruct the tPE. (TAUP2025: oral 191)
• PE timings makes the separation of different vertices more possible.
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Figure: Pile up event example
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BAyesian Probe for Point-like Events
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BAyesian Probe for Point-like Events
Based on the waveforms observed from PMTs, predict (~r,E, t0) of the vertex.

• FSMP outputs posterior ensemble of PE timings sequence.
• {zj} contains richer temporal information than first hit time and charge, for

enhanced resolution.

Figure: Vertex lighting schematic
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Figure: performance of FSMP with toy MC
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BAyesian Probe for Point-like Events
Based on the waveforms observed from PMTs, predict (~r,E, t0) of the vertex.

• FSMP outputs posterior ensemble of PE timings sequence.
• {zj} contains richer temporal information than fisrt hit time and charge, for

enhanced resolution.

Figure: Vertex lighting schematic

• Probe(doi: 10.1016/j.nima.2023.168692): The Poisson
intensity of {zj} is determined by probe Rj(t;~r,E, t0)
and the darknoise count rate bj of each PMT. (TAUP
2025: poster 96)

• BAPPE is accomplished by integrating FSMP and
probe through the total probability formula
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Likelihood

Likelihood for the given true value z

p(zj|~r,E, t0) =

nj∏
k=1

[Rj(tjk;~r,E, t0) + bj] exp

{
−
∫ t

t
[Rj(t − t0;~r,E, t0) + bj]dt

}

• {zj}: PE timings sequence of the jth PMT
• Rj(tjk;~r,E, t0): The probe is suitable for deployment across multiple detectors:

JNE, OSIRIS, TAO, JUNO
• bj: Dark noise naturally incorporates into the Poisson intensity
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Likelihood

Likelihood function
Likelihood for the given true value z

p(zj|~r,E, t0) =
∏

j

nj∏
k=1

[Rj(tjk;~r,E, t0) + bj] exp

{
−
∫ t

t
[Rj(t − t0;~r,E, t0) + bj]dt

}

Full likelihood

L(~r,E, t0|{wj}) =
∏

j
p(wj|~r,E, t0) =

∏
j

∑̃
z

p(wj|zj)p(zj|~r,E, t0)

∑̃
z is implemented within FSMP. {zj} leads to a more concise and direct likelihood.
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BAPPEn: BAPPE for multi-site events

• Denote (~r, t0) as V
• The additivity of Poisson processes naturally extends to multi-site reconstruction.

Likelihood function of BAPPEn for multi-point events

p(zj|{Em}, {Vm}) =
nj∏

k=1

[ N∑
m=1

Rj(tjk;Em,Vm) + bj

]
exp

{
−
∫ N∑

m=1
[Rj(t;Em,Vm) + bj]dt

}
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Gibbs sampling
Using Gibbs group sampling to sample from the posterior distribution of parameters.
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Reversible Jump MCMC on the group of ({Em}, {Vm})
Perturbation of {Vm}: Reversible Jump MCMC
• Generate: a vertex is randomly generated

({Vm}i → {Vm}i ∪ V+)
• Annihilate: one of the vertices is randomly

chosen to be removed ({Vm}i → {Vm}i \ V−)
• Move: one of the vertices is randomly selected

to move its position ({Vm}i \ {V−} ∪ {V+})
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Too many parameters make it difficult to converge. Using the EM algorithm on {Em}
with the profile likelihood to speed up

p({z}|{Vm}) = argmax
{Em}

p({z}|{Em}, {Vm})
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Performance of BAPPE on Simulated
Data

Xu Chuang (THU) BAPPEn: Reconstruction for pile-up events 12 / 21



Pile up in Liquid Scintillator Detectors BAPPE Performance of BAPPE on Simulated Data Affect of Afterpulse Summary

JNE 1-ton prototype

Figure: JNE 1-ton prototype

• Location: The China Jinping Underground
Laboratory (CJPL)

• Scintillator: 0.07 g/L PPO, 13 mg/L bisMSB in
LAB

• Radius of scintillator: 0.645 m
• PMTs: 60 8-inch NNVT MCP-PMTs
• Data acquisition: 1 GHz FADC, 1000 ns readout
• Simulation Trigger threshold: 25 PMTs hit
• Simulation Dataset: 4000 212Bi decay events

uniformly distributed in the detector.
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Performance of Energy on Delayed Vertex in 212Bi212Po
• The delayed vertex is 8.95MeV α.
• Etruth is defined as the number of photons emitted by 1 MeV electron.
• The energy resolution is 11.08 ± 0.27% @ 0.87 MeV.
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Figure: Energy reconstruction
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Figure: Energy bias distribution
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Performance of Position and Timing on Delayed Vertex in BiPo212
• The spatial resolution σ(xrec − xtruth) is 3.71 ± 0.80 cm @ 0.87 MeV.
• The timing resolution σ(DeltaTrec − DeltaTtruth): 1.482 ± 0.024ns.
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Figure: Position reconstruction
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Figure: Energy reconstruction
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Performance of BiPo212 discrimination
• Events separated by more than 100 ns are resolvable within the time window.
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Affect of Afterpulse

Affect of Afterpulse
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Affect of Afterpulse
• The after-pulses from MCP-PMTs are not accounted for in the simulation, which

affects the event reconstruction when the BAPPEn algorithm is applied to the raw
data.

• In the time window of 1000ns, the after-pulse can be observed in the MCP-PMT
of JNE 1-ton prototype.(doi: 10.1016/j.nima.2023.168506)

Figure: time distributions of darknoises, after-pulses for an MCP-PMTXu Chuang (THU) BAPPEn: Reconstruction for pile-up events 18 / 21
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After-pulse parameters of MCP-PMTs

• The after-pulse from H+, H+
2 , He+ will affect the reconstruction of BAPPEn.

• The after-pulse needs to be modeled in the likelihood function of BAPPEn.

H+ H+
2 He+

t / ns 300 ± 4 414 ± 25 596 ± 53
A / Nhit / 10−3 1.6 ± 1.1 0.5 ± 0.3 0.2 ± 0.2

σ / ns 16 ± 6 46 ± 9 33 ± 10

Table: After-pulse parameters of MCP-PMTs(doi: 10.1016/j.nima.2023.168506)
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Summary
• BAPPE is a joint reconstruction method based on likelihood from waveform to

vertex.
• BAPPEn is an extension of BAPPE for multi-site events.
• The performance of BAPPEn is verified on the simulated 212Bi212Po dataset in

the JNE 1-ton prototype.

Prospects
• Consider the after-pulse in the likelihood function of BAPPEn.
• Apply BAPPEn to the 212Bi212Po candidates and 14C pile up events in the liquid

scintillator detectors. Such as JNE, JUNO.
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Thank you for listening!
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Backup

Gibbs sampling on the group of z

FSMP provides accurate posterior distribution of PE timings sequence {z}
Perturbation of zj: Using z′j frequency weighted random selection (Metropolized
independence sampler)

zj → z′j
The acceptance of zj is

min

{
1,

p(z′j|{Em}, {Vm})qj(zj)

p(zj|{Em}, {Vm})qj(z′j)

}

• qj(zj) is the pre-determined prior distribution when FSMP sampling on z
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Energy Calibration with n-H Capture Gammas
• n-H capture gammas: 2.223 MeV delayed vertex from AmBe source
• Reconstruted energy of n-H capture gammas: 2.737 ± 0.001 MeV
• Energy resolution: 6.661 ± 0.011% @ 2.223 MeV
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Figure: dt of n-H capture gammas
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Figure: Energy spectrum of n-H

Xu Chuang (THU) BAPPEn: Reconstruction for pile-up events 2 / 4



Backup

BiPo212 Cascades Selection

• Effective PMTs: 48. Trigger threshold: 32 PMTs hit
• Readout time window: 1000 ns
• Dataset: 27.3 h continuous data acquistion on 20250329-20250330

• Prompt energy ∈ [1, 2.2] MeV
• Delayed energy ∈ [0.7, 1.1] MeV
• Distance < 15 cm
• Delat T ∈ [50, 800] ns
• Prompt Timing ∈ [100, 200] ns
• Delayed Timing ∈ [150, 800] ns 0 1 2 3 4 5
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BiPo212 Cascades Selection
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BiPo212 Cascades Selection
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Half-life fitting

• The reference value is τ = 431 ns
• Fitted: τ = 446.62±107.35 ns
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