Reconstruction for pile-up events based on Markov chain Monte Carlo method in liquid scintillator detectors

Xu Chuang, Xu Benda, Wang Yuyi, Hao Chuanhui

 $Department\ of\ Engineering\ Physics,\ Tsinghua\ University,\ Beijing\ 100084,\ China.$

August 26, 2025

Liquid Scintillator Detectors

- Liquid scintillator detectors have become crucial in neutrino physics due to their cost-effectiveness and high precision.
- Close successive events (14 C coincidence, 212 Bi 212 Po) will pile up within the 1 μ s time window.
- We explore multi-site reconstruction algorithm to address it.

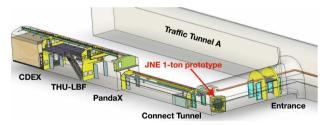


Figure: Schematic layout of hall A at CJPL-I

Pile up in Liquid Scintillator Detectors

Pile up within the same time window

- The PEs from different vertices overlap in the same time window.
- The waveform analysis method FSMP (arxiv: 2403.03156) is developed to reconstruct the $t_{\rm PE}$. (TAUP2025: oral 191)
- PE timings makes the separation of different vertices more possible.

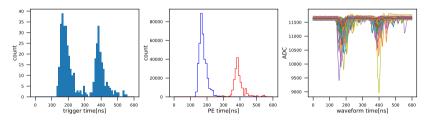


Figure: Pile up event example

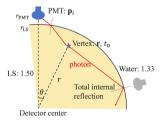
Pile up in Liquid Scintillator Detectors

BAyesian Probe for Point-like Events

BAyesian Probe for Point-like Events

Based on the waveforms observed from PMTs, predict (\vec{r}, E, t_0) of the vertex.

- FSMP outputs posterior ensemble of **PE timings sequence**.
- $\{z_j\}$ contains richer temporal information than first hit time and charge, for enhanced resolution.



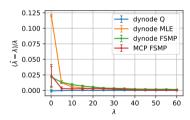


Figure: performance of FSMP with toy MC

BAyesian Probe for Point-like Events

Based on the waveforms observed from PMTs, predict (\vec{r}, E, t_0) of the vertex.

- FSMP outputs posterior ensemble of **PE timings sequence**.
- $\{z_j\}$ contains richer temporal information than first hit time and charge, for enhanced resolution.

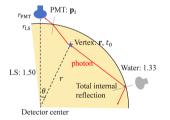


Figure: Vertex lighting schematic

- Probe(doi: 10.1016/j.nima.2023.168692): The Poisson intensity of $\{z_j\}$ is determined by probe $R_j(t; \vec{r}, E, t_0)$ and the darknoise count rate b_j of each PMT. (TAUP 2025: poster 96)
- BAPPE is accomplished by integrating FSMP and probe through the total probability formula

Likelihood

Likelihood for the given true value z

$$p(\mathbf{z}_{j}|\vec{r}, E, t_{0}) = \prod_{k=1}^{n_{j}} [R_{j}(t_{jk}; \vec{r}, E, t_{0}) + b_{j}] \exp \left\{ -\int_{\underline{t}}^{\overline{t}} [R_{j}(t - t_{0}; \vec{r}, E, t_{0}) + b_{j}] dt \right\}$$

- $\{z_i\}$: PE timings sequence of the *j*th PMT
- $R_j(t_{jk}; \vec{r}, E, t_0)$: The probe is suitable for deployment across multiple detectors: JNE, OSIRIS, TAO, JUNO
- b_i: Dark noise naturally incorporates into the Poisson intensity

Likelihood

Likelihood function

Likelihood for the given true value z

$$p(\mathbf{z}_{j}|\vec{r}, E, t_{0}) = \prod_{j} \prod_{k=1}^{n_{j}} [R_{j}(t_{jk}; \vec{r}, E, t_{0}) + b_{j}] \exp \left\{ - \int_{\underline{t}}^{\overline{t}} [R_{j}(t - t_{0}; \vec{r}, E, t_{0}) + b_{j}] dt \right\}$$

Full likelihood

$$\mathcal{L}(\vec{r}, E, t_0 | \{ \mathbf{w}_j \}) = \prod_j p(\mathbf{w}_j | \vec{r}, E, t_0) = \prod_j \sum_{\mathbf{z}} p(\mathbf{w}_j | \mathbf{z}_j) p(\mathbf{z}_j | \vec{r}, E, t_0)$$

 $\sum_{\mathbf{z}}$ is implemented within FSMP. $\{\mathbf{z}_j\}$ leads to a more concise and direct likelihood.

BAPPEn: BAPPE for multi-site events

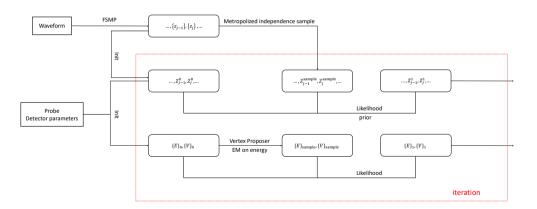
- Denote (\vec{r}, t_0) as \mathcal{V}
- The additivity of Poisson processes naturally extends to multi-site reconstruction.

Likelihood function of BAPPEn for multi-point events

$$p(\boldsymbol{z_j}|\{E_m\},\{V_m\}) = \prod_{k=1}^{n_j} \left[\sum_{m=1}^{N} R_j(t_{jk};E_m,V_m) + b_j \right] \exp \left\{ -\int \sum_{m=1}^{N} [R_j(t;E_m,V_m) + b_j] dt \right\}$$

Gibbs sampling

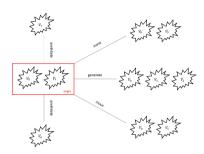
Using Gibbs group sampling to sample from the posterior distribution of parameters.



Reversible Jump MCMC on the group of $({E_m}, {V_m})$

Perturbation of $\{V_m\}$: Reversible Jump MCMC

- Generate: a vertex is randomly generated $(\{\mathcal{V}_m\}_i \to \{\mathcal{V}_m\}_i \cup \mathcal{V}_+)$
- Annihilate: one of the vertices is randomly chosen to be removed ({V_m}_i → {V_m}_i \ V_−)
- Move: one of the vertices is randomly selected to move its position $(\{\mathcal{V}_m\}_i \setminus \{\mathcal{V}_-\} \cup \{\mathcal{V}_+\})$



Too many parameters make it difficult to converge. Using the EM algorithm on $\{E_m\}$ with the profile likelihood to speed up

$$p(\lbrace \mathbf{z}\rbrace|\lbrace \mathcal{V}_m\rbrace) = \underset{\lbrace E_m\rbrace}{\operatorname{arg \, max}} \ p(\lbrace \mathbf{z}\rbrace|\lbrace E_m\rbrace,\lbrace \mathcal{V}_m\rbrace)$$

Performance of BAPPE on Simulated Data

JNE 1-ton prototype

Figure: JNE 1-ton prototype

- Location: The China Jinping Underground Laboratory (CJPL)
- Scintillator: $0.07\,\mathrm{g/L}$ PPO, $13\,\mathrm{mg/L}$ bisMSB in LAB
- Radius of scintillator: 0.645 m
- PMTs: 60 8-inch NNVT MCP-PMTs
- Data acquisition: 1 GHz FADC, 1000 ns readout
- Simulation Trigger threshold: 25 PMTs hit
- Simulation Dataset: 4000 ²¹²Bi decay events uniformly distributed in the detector.

Performance of Energy on Delayed Vertex in ²¹²Bi²¹²Po

- The delayed vertex is 8.95MeV α .
- ullet E_{truth} is defined as the number of photons emitted by 1 MeV electron.
- The energy resolution is $11.08 \pm 0.27\%$ @ 0.87 MeV.

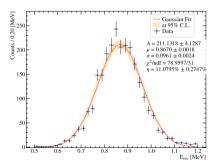


Figure: Energy reconstruction

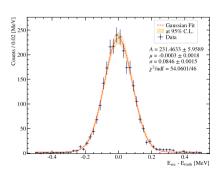


Figure: Energy bias distribution

Performance of Position and Timing on Delayed Vertex in BiPo212

- The spatial resolution $\sigma(x_{\rm rec}-x_{\rm truth})$ is 3.71 \pm 0.80 cm @ 0.87 MeV.
- The timing resolution $\sigma(\mathrm{DeltaT_{rec}} \mathrm{DeltaT_{truth}})$: 1.482 \pm 0.024ns.

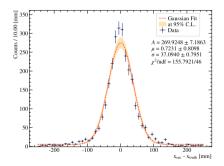


Figure: Position reconstruction

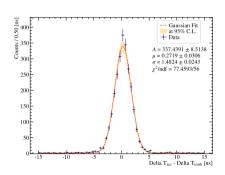
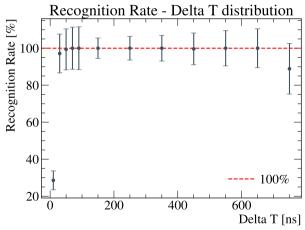


Figure: Energy reconstruction

Performance of BiPo212 discrimination

• Events separated by more than 100 ns are resolvable within the time window.

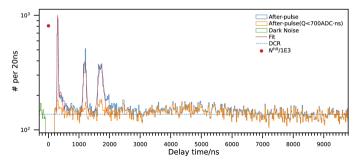


Affect of Afterpulse

Affect of Afterpulse

Affect of Afterpulse

- The after-pulses from MCP-PMTs are not accounted for in the simulation, which affects the event reconstruction when the BAPPEn algorithm is applied to the raw data.
- In the time window of 1000ns, the after-pulse can be observed in the MCP-PMT of JNE 1-ton prototype.(doi: 10.1016/j.nima.2023.168506)



After-pulse parameters of MCP-PMTs

- The after-pulse from H⁺, H₂⁺, He⁺ will affect the reconstruction of BAPPEn.
- The after-pulse needs to be modeled in the likelihood function of BAPPEn.

	H^+	H_2^+	He^+
t $/$ ns A $/$ N $^{ m hit}$ $/$ 10 $^{-3}$		414 ± 25	
A $/$ N $^{ m hit}$ $/$ 10^{-3}	1.6 ± 1.1	0.5 ± 0.3	0.2 ± 0.2
σ / ns	16 ± 6	46 ± 9	33 ± 10

Table: After-pulse parameters of MCP-PMTs(doi: 10.1016/j.nima.2023.168506)

Summary

- BAPPE is a joint reconstruction method based on likelihood from waveform to vertex.
- BAPPEn is an extension of BAPPE for multi-site events.
- The performance of BAPPEn is verified on the simulated $^{212}{\rm Bi}^{212}{\rm Po}$ dataset in the JNE 1-ton prototype.

Prospects

- Consider the after-pulse in the likelihood function of BAPPEn.
- Apply BAPPEn to the ²¹²Bi²¹²Po candidates and ¹⁴C pile up events in the liquid scintillator detectors. Such as JNE, JUNO.

Thank you for listening!

Gibbs sampling on the group of **z**

FSMP provides accurate posterior distribution of **PE timings sequence** $\{z\}$ Perturbation of z_j : Using z_j' frequency weighted random selection (Metropolized independence sampler)

$$extbf{z}_j
ightarrow extbf{z}_j'$$

The acceptance of z_i is

$$\min \left\{ 1, \frac{p(\mathbf{z}_j' | \{E_m\}, \{\mathcal{V}_m\}) q_j(\mathbf{z}_j)}{p(\mathbf{z}_j | \{E_m\}, \{\mathcal{V}_m\}) q_j(\mathbf{z}_j')} \right\}$$

• $q_i(z_i)$ is the pre-determined prior distribution when FSMP sampling on z

Energy Calibration with n-H Capture Gammas

- n-H capture gammas: 2.223 MeV delayed vertex from AmBe source
- ullet Reconstruted energy of n-H capture gammas: 2.737 \pm 0.001 MeV
- ullet Energy resolution: 6.661 \pm 0.011% @ 2.223 MeV

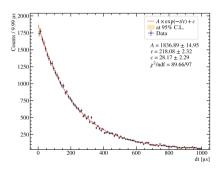


Figure: dt of n-H capture gammas

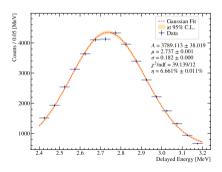
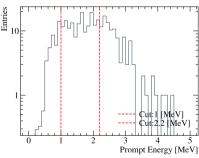
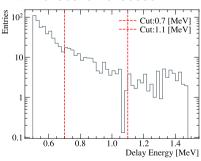


Figure: Energy spectrum of n-H

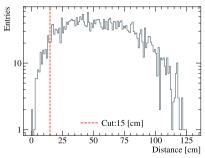
- Effective PMTs: 48. Trigger threshold: 32 PMTs hit
- Readout time window: 1000 ns
- Dataset: 27.3 h continuous data acquistion on 20250329-20250330
- Prompt energy \in [1, 2.2] MeV
- Delayed energy \in [0.7, 1.1] MeV
- Distance < 15 cm
- Delat $T \in [50, 800]$ ns
- Prompt Timing \in [100, 200] ns
- Delayed Timing \in [150, 800] ns



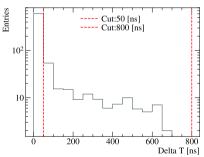
- Effective PMTs: 48. Trigger threshold: 32 PMTs hit
- Readout time window: 1000 ns
- Dataset: 27.3 h continuous data acquistion on 20250329-20250330
- Prompt energy \in [1, 2.2] MeV
- Delayed energy \in [0.7, 1.1] MeV
- Distance < 15 cm
- Delat $T \in [50, 800]$ ns
- Prompt Timing \in [100, 200] ns
- Delayed Timing \in [150, 800] ns



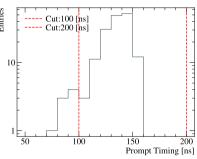
- Effective PMTs: 48. Trigger threshold: 32 PMTs hit
- Readout time window: 1000 ns
- Dataset: 27.3 h continuous data acquistion on 20250329-20250330
- Prompt energy \in [1, 2.2] MeV
- Delayed energy \in [0.7, 1.1] MeV
- Distance < 15 cm
- Delat $T \in [50, 800]$ ns
- Prompt Timing \in [100, 200] ns
- Delayed Timing \in [150, 800] ns



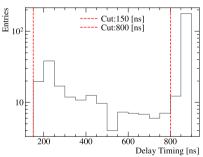
- Effective PMTs: 48. Trigger threshold: 32 PMTs hit
- Readout time window: 1000 ns
- Dataset: 27.3 h continuous data acquistion on 20250329-20250330
- Prompt energy \in [1, 2.2] MeV
- Delayed energy \in [0.7, 1.1] MeV
- Distance < 15 cm
- Delat $T \in [50, 800]$ ns
- Prompt Timing \in [100, 200] ns
- Delayed Timing \in [150, 800] ns



- Effective PMTs: 48. Trigger threshold: 32 PMTs hit
- Readout time window: 1000 ns
- Dataset: 27.3 h continuous data acquistion on 20250329-20250330
- Prompt energy \in [1, 2.2] MeV
- Delayed energy \in [0.7, 1.1] MeV
- Distance < 15 cm
- Delat $T \in [50, 800]$ ns
- Prompt Timing \in [100, 200] ns
- Delayed Timing \in [150, 800] ns



- Effective PMTs: 48. Trigger threshold: 32 PMTs hit
- Readout time window: 1000 ns
- Dataset: 27.3 h continuous data acquistion on 20250329-20250330
- Prompt energy \in [1, 2.2] MeV
- Delayed energy \in [0.7, 1.1] MeV
- Distance < 15 cm
- Delat $T \in [50, 800]$ ns
- Prompt Timing \in [100, 200] ns
- Delayed Timing \in [150, 800] ns



Half-life fitting

- The reference value is $\tau = 431$ ns
- Fitted: $\tau = 446.62 \pm 107.35 \, \text{ns}$

