Nuclear Recoil Tracking for Directional CEvNS with π -DAR Sources

TAUP 2025 - Xichang, Sichuan, China August 27th, 2025

David Caratelli, UC Santa Barbara dcaratelli@ucsb.edu

Outline

Motivation for Directional NR CEvNS detectors

NRs in CEvNS with a π -DAR source

Characterization of NR propagation (in argon)

Detector response simulation + R&D

TRANSLATE: electron transport modeling in argon

PRD 102 (2020) 1, 015009

NR Directionality in CEvNS

M. Abdullah, D. Aristizabal Sierra, B. Dutta, L. Strigari

Physics Reach of NR Directionality

- ullet event-by-event u energy reconstruction
- Background rejection
- Increased sensitivity in BSM searches
- CEvNS cross-section and SM physics: $\frac{d^2\sigma}{dEd\cos\theta}$
- Astrophysical ν s: solar / supernova / DM "neutrino fog"

NRs from CEVNS in π -DAR Source

SNS flux: PhysRevD.106.032003

~1 GeV

$$E_{NR max} = 2E_{\nu}^2/M_{\text{target}}$$

10s-100s keV NRs

75

50

25

0.2

0.4

0.6

 $\cos\theta_r$

8.0

Characterization of NR Propagation (in Ar)

NRs measured through thermal, ionization, and scintillation signatures.

Current experiments measure "point-like" signature

NR leaves a tiny track-like feature.

Scale: 100 μ m / 100 keV @ 1 atm GAr

Imaging NRs from π -DAR CEvNS requires O(10-100 μ m) spatial resolution depending on target / pressure.

We use SRIM simulation to study these tiny signatures.

Characterization of NR Propagation (in Ar)

Simulated 60 keV NRs in 1 atm GAr

Complex propagation: scattering in target material, secondary recoils

Characterization of NR Propagation (in Ar)

How does the spread in Edep, range, and angular deflections impact the intrinsic resolution of a possible directional CEvNS detector?

- O(20%) energy / range intrinsic smearing
- < 20 degree angular deflection

(this is comparable to resolution on E_{ν} in GeV-scale interactions due to complex nuclear physics of interactions)

CEVNS Signature w/ Intrinsic Detector Smearing

Assumed resolution:

- 20% energy resolution
- 20 degree angular smearing

SNS exposure w/ 24 kg Ar @ 20 meter

(Same target/distance as COHERENT CEvNS-10 LAr measurement)

 $O(10^3)$ events / year

Conceivable detector concept...

Helps set goal for detector performance. Intrinsic smearing sets performance.

Detector R&D

Which experimental setup to use for NR "imaging"?

Experimental Directional NR Community

Large community approaching NR directionality with broad physics interest (DM, ν , Migdal effect, neutron detection) and technology approaches.

Our work focuses on gas-based TPC for NR imaging.

- Measure ionization signal with "pixelated" sensors.
- Optimization between density/volume and position resolution.
- Here focus on argon target (personally more familiar)

CYGNUS: <u>arXiv:2203.05914</u>

GAr-TPC Design

GEM-based detectors

tip-based sensors: detector R&D

LArCADe: tip-array simulation

LArCADe: tip-array simulation

optimize tip geometry and provide input for quantitative gain assessment: O(100) µm height, O(10s) nm tip radius.

Detector Response Simulation

Detector Response Simulation

Implement reasonable detector modeling in order to:

- Optimize target detector configuration
- Compile realistic physics-reach studies

Effects to account for:

- Ionization track simulation [SRIM]
- Ion recombination / quenching
- Electron transport: diffusion
- Charge sensor response

TRANSLATE

TRANSport in Liquid Argon of near-Thermal Electrons

CPC 297 (2024) 109056

TRANSLATE -- A Monte Carlo Simulation of Electron Transport in Liquid Argon

Zach Beever, David Caratelli, Angela Fava, Francesco Pietropaolo, Francesca Stocker, Jacob Zettlemoyer

TRANSLATE: Monte Carlo simulation

TRANSLATE: Monte Carlo simulation

TRANSLATE: simulation output

TRANSLATE: simulation output

Simulation of electron amplification in complex geometries

TRANSLATE: simulation validation

Track $O(10^2 - 10^3)$ electrons over time intervals of $10^{-9} - 10^{-6}$ seconds.

Track as a function of E-field:

- 1. Average distance traveled → drift velocity [GAr & LAr]
- 2. Spread in electron clouds → diffusion [GAr & LAr]
- 3. Amplification [GAr]

TRANSLATE: drift velocity in GAr Drift Velocity in GAr

TRANSLATE: ion diffusion

TRANSLATE: charge amplification

TRANSLATE: ion recombination

Conclusions

Gas-based TPC for directional NR detection from π -DAR CEvNS is challenging but worth exploring.

Broad physics program:

- E measurement: oscillations / precision xsec
- Kinematics boost BSM sensitivity
- Neutron background rejection

Developing more refined sensitivity studies. Working with GAr, but much broader community active in many directions.

