

Progress on the NvDEx high pressure vessel and gas system

Yanlong Chang (LU), Qiang Hu (IMP), Hao Qiu (IMP)

2025.8.24~30 , Xichang, China

Motivation and the NvDEx concept

Motivation

Observation of 0νββ decay will be very important

- v is a Majorana particle → beyond Standard Model
- explain the finite but tiny v masses
- constrain absolute v mass & mass hierarchy
- explain matter-antimatter asymmetry in the universe via CP and lepton number violation

- Inverted hierarchy: $m_{\beta\beta} > \sim 10$ meV, goal of next generation experiments
- Normal hierarchy: $m_{\beta\beta} > \sim 1 \text{ meV}$
- Currently, both oscillation experimental results and physics naturalness slightly prefer normal hierarchy

Motivation

$$oxed{rac{1}{T_{etaeta}^{0
u}}=G^{0
u}\cdotig|M^{0
u}ig|^2\cdot\langle m_{etaeta}
angle^2}$$

0 bkg:
$$T_{1/2}^{0\nu}(\exp) = (\ln 2)N_a \frac{a}{A} \varepsilon \frac{MT}{n_{CL}}$$

high bkg:
$$T_{1/2}^{0\nu}(\exp) = (\ln 2)N_a \frac{a}{A} \varepsilon \sqrt{\frac{MT}{b\Delta E}}$$

- Reducing $b\Delta E$ is the key to increase experiment sensitivity
- 0 background: $m_{\beta\beta}$ sensitivity $\propto (MT)^{-1/2}$
- High background: m_{BB} sensitivity $\propto (MT)^{-1/4}$

Motivation

"100kg-class" experiments:

- For ~0 background experiments, $T_{1/2} \sim 10^{29} \text{ yr} \implies \sim \text{several } 10 \text{ ton yr exposure}$
- \rightarrow In order to use the isotopes (funding) efficiently, we need background level of \sim 0.1 ct / ton yr ROI
- Most of current experiments are >= 1 order of magnitude away from this goal

NvDEx concept

Advantages

- ✓ High Q(82Se)~2.996 MeV
- ✓ High pressure TPC (82 SeF₆) → good signal and background distinguish ability
- ✓ Read out with Top-metal CMOS chips, energy resolution can reach ~1%(FWHM)
- ✓ CJPL: the deepest underground laboratory

NvDEx concept

Operation pressure: <=1.5 MPa

Development of the NvDEx high pressure vessel

Copper shielding, thermal conductor, cooling jacket and filler

Barrel

End cap

Cooling tube

Filler (POM)

Cleaning and assembly

Cleaning and final assembly of the high pressure vessel have been finished.

Helium hood test

The biggest challenge is the leak tightness of the DN1200 flange After preliminary optimization, the leakage of the DN1200 flange reached about 1*10⁻¹¹ mbar*l/s

Pressure hold test

After about 5 weeks pressure hold test at ~ 1 MPa, no significant leakage was observed

Gas system

Design of the gas system

Closed-loop control

• Real-time monitoring and feedback

Main equipment

High pressure vessel, chiller unit, condenser, air storage tank, emergency blow-down tank, vacuum pump, etc.

- 1. Preparation
- 2. Start-up
- 3. Shut-down
- 4. Start-up

Main equipment

Pipeline processing

Dry pump

The gas pipeline is finished, and commissioning is ongoing

Remote control

Airtight clean room

- The entire experimental set-up will be placed in an airtight clean room
- During data taking, the clean room will be kept airtight, and the whole experiment will be controlled remotely
- SeF₆ gas reactor (molten NaOH) in the room to absorb any leaked gas
- When accessing the experiment, SeF₆ will be condensed in isolated airtight rooms

SeF₆ gas

Corrosion test (2 weeks)

Gold plated (1 µ)

H₂O:1.2% H₂O:0.3%

H₂O:0.01%

The purity of SeF_6 after rectification is $\geq 99.9\%$

SeF6 has been produced by Shandong Zhongshan Photoelectric Materials Co., Ltd.

Tin

H₂O:1.2%

H₂O:0.3%

H₂O:0.01%

Gas absorption treatment

	Inlet concentration (SeF ₆)	Temperature (°C)	Inflow rate	Outflow rate	Absorption efficiency
1	99%	100	1.5 L/min	300 mL/min	80%
2	99%	150	1.5 L/min	0 (no bubble)	100%
3	99%	320 (molten)	1.5 L/min	0 (no bubble)	100%

The SeF₆ can be absorbed with the proposed method.

Summary

- > The NvDEx high pressure vessel, copper shielding and filler have been developed
- > The leakage of the NvDEx high pressure vessel has been tested with different methods
- > The gas pipeline is being built
- > SeF₆ has been produced and used for corrosion test
- > The proposed method for SeF₆ absorption treatment is feasible

Future plan

- Optimize the sealing of the high pressure vessel and gas system
- Integrated commissioning of the high pressure vessel and the gas system in the ground laboratory at Lanzhou
- System assembly and commission, begin taking data (using SF6 gas, w/o airtight cleanroom) (2027)

Thank you for your attention!

Background & sensitivity estimations

"100kg-class" experiments:

- ~<0.05 counts / year in ROI \Rightarrow ~0.5 cts / (ton yr ROI)
 - Below the world's major existing experiments
- $T_{1/2} > 4 \times 10^{26}$ yr at 90% CL with 100 kg 82 SeF₆ 5 yrs, better than the current world record - KamLAND-Zen

22