

New 1-ton neutrino detector at CJPL-I: equipment upgrades and performance

Haozhe Sun

19th International Conference on Topics in Astroparticle and Underground Physics
On Behalf of JNE

Aug, 27, 2025

Motivation

- The 1-ton detector is a prototype for the future 500t detector.
 - Testing MCP-PMTs and selfdeveloped electronics system
 - Testing reconstruction algorithm
- The 1-ton detector has capability for some physics study.
 - Background measurement
 - Muon flux and muon induced neutron yield measurement

		PMT	LS
Decay rate [Bq/g]	²¹⁴ Bi ²⁰⁸ Tl ²¹² Bi	$(1.64 \pm 0.47) \times 10^{-3}$	$(1.59 \pm 0.20) \times 10^{-8}$ $< (1.01 \pm 0.20) \times 10^{-9}$
Contamination level [g/g]	40 K 238 U 232 Th	$(1.24 \pm 0.35) \times 10^{-2}$ $(1.12 \pm 0.32) \times 10^{-6}$	
Contamination level [g/g]	$^{40}\mathrm{K}$	$(4.67 \pm 1.35) \times 10^{-8}$	$(2.49 \pm 0.50) \times 10^{-2}$

DOI:10.1016/j.nima.2023.168400

DOI:10.1103/PhysRevD.110.112017

- Experimental Site
- Detector Structure
 - Target
 - MCP-PMT
 - Electronics System
- Calibration and Reconstruction
 - Time and Energy Calibration
 - Event-by-event Direction Reconstruction
- Prospect

Experimental Site

• The China Jinping Underground Laboratory (CJPL) is located in

Sichuan province, China.

- Low reactor neutrino rate and low muon rate
- Granite, low natural radioactivity background
- Suitable for neutrino experiment

- Experimental Site
- Detector Structure
 - Target
 - MCP-PMT
 - Electronics System
- Calibration and Reconstruction
 - Time and Energy Calibration
 - Event-by-event Direction Reconstruction
- Prospect

Detector Structure

Outer

Water and steal shielding

MCP-PMTs

Acrylic sphere

Target: water / LS / LiCl

Inner

Equipment Upgrade

• 30PMTs

2017 - 2024.6

• Filled with pure water

• Installed light shielding cylinder

2024.9

Changed PMTs

2025.5

- New liquid scintillator
- New Electronics system
-

Future

Old 1-ton detector

Dry run

Water

Dry run

Water

2025.8

2024.6

- Replaced with 60 MCP-PMTs •
- Removed lead shielding

2025.1

LS

- Filled with liquid scintillator •
- Calibrated the detector

Installed light shielding sphere

Target (Slow LS & LiCl aqueous solution)

- The properties of Slow LS and LiCl aqueous solution has been studied
 - Slow LS: separating scintillation and Cerenkov light
 - LiCl aqueous solution: detecting solar neutrino spectrum & separating CS light

20L detector structure and bottom PMT waveform

Flour: Carbostyril-124

- Large cross section
- High natural abundance
- High transparency

LiCl aqueous solution sample

DOI:10.1088/1748-0221/18/07/P07039

MCP-PMT Performance Measurement

- Jointly developed by NNVT and Tsinghua
- Parameters of MCP-PMTs have been measured with a testing system.
 - High QE, low TTS, low DR and low background
 - Better photon detection efficiency boost

Darkroom	Board	
PMT Base		VISA CAEN LIB SNMP FADC CAEN V1751 HV Signal Trigger Attenuator Pico Laser

Parameters	Value	Criteria	Notes	Section
\overline{Q}/Q_0	1.8 ± 0.1		Entire-sample to main- peak gain ratio	3.2
$v_0 = \sigma_{Q_0}/Q_0$	0.25 ± 0.02		Peak resolution	3.2
$v = \sqrt{s_Q^2} / \overline{Q}$	0.69 ± 0.03		Sample resolution	3.2
N^{1e}/N^{hit}	0.59 ± 0.02		Main-peak fraction	3.2
P/V	5.9 ± 1.4	>5	Peak-to-valley ratio	3.3
t _r /ns	$3.71~\pm~0.15$	<4	Rise time	3.4
t _f /ns	15.6 ± 1.8	<20	Fall time	3.4
$\sigma_{\rm SER}/{\rm ns}$	1.63 ± 0.06		Shape parameters of	3.4
$ au_{ m SER}/ m ns$	7.2 ± 1.1		SER	
TTS/ns	1.73 ± 0.08	<1.8	Transit time spread	3.5
DCR/kHz	5.8 ± 1.6	~5	Dark count rate	3.6
$P_{\rm pre}$	$1E-6 \pm 6E-6$	< 0.001	Pre-pulse probability	3.7
$P_{ m after}$	0.009 ± 0.005	< 0.048	After-pulse probability	3.7
ϵ^0	1.71 ± 0.06	>1.6	Relative PDE	3.8

Φ203 ±2

Single Electron Charge Spectra of MCP-PMT

- The long tail structure in single electron charge spectra has been studied.
 - The long tail structure is caused by secondary electrons emission.

• Using a Gamma-Tweedie mixture distribution to fit the single electron charge spectra.

- Poisson: different modes
- Gamma: single mode
- Poisson-Gamma compound → Tweedie

DOI:10.1016/j.nima.2024.169626

MCP-PMTs' Dark Noise Evolution

- We measured the dark noise rate of the MCP-PMTs
 - The dark noise rate is 1.1kHz (2025.3)
 - The rate decreases over time, dropping to 1/3 within 8 month.
 - We plan to study the reason of the decrease.

MCP-PMT + Light Concentrator

- Further enhancement of photon detection efficiency for the future 500-ton detector
 - 40% improvement when $\theta_{\text{incident}} < 30^{\circ}$
 - TTS only increased by < 0.3ns

DOI:10.1016/j.nima.2025.170755

Electronics System

- To meet the experimental requirements, a new self-developed electronic system has been designed.
 - 350 mW/ch, 12-bit, 1 GSps
 - Readout board, Bandwidth 300 MHz, 40Gbps
 - Higher accuracy FADCs are being developed and tested

ADAM105A2

Event Display

- An event display program based on JavaScript.
 - Real-time event visualization
 - Real-time detector status monitoring

- Experimental Site
- Detector Structure
 - Target
 - MCP-PMT
 - Electronics System

Calibration and Reconstruction

- Time and Energy Calibration
- Event-by-event Direction Reconstruction
- Prospect

Time and Energy Calibration

- Time Calibration:
 - Defined residual, and minimize the residual through iteration.
- Energy Calibration:
 - Hang radioactivity source in the center of the detector.

Event-by-event Direction Reconstruction

- From waveform analysis to event reconstruction.
 - Obtain PE number and each PE time from waveform
 - Scintillation and Cerenkov light are reconstructed separately, for direction and energy reconstruction.

DOI: 10.1088/1748-0221/18/02/P02004

- Experimental Site
- Detector Structure
 - Target
 - MCP-PMT
 - Electronics System
- Calibration and Reconstruction
 - Time and Energy Calibration
 - Event-by-event Direction Reconstruction
- Prospect

Prospect

- Studying performance of new technology
 - Stability of MCP-PMTs
 - Sampling rate of self-developed electronics system

• • • • •

- Testing new liquid scintillators
 - Slow LS
 - LiCl aqueous solution

• • • • •

- Studying experiment hall's background
 - Muon flux measurement using different targets
 - Environment background

.

Thanks for Attention!