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Jiangmen Underground Neutrino Observatory

52.5 km is the sweet spot for ν oscillation.
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ν̄ Inverse Beta Decay

ν̄e + p −−→ e+ + n

e+/γ scintillation light are collected by photomultipliers.
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Photon Time Projection at Liquid Scintillation Detectors
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From drift electrons to omnidirectional photons
Speed from drift 1 cm/ţs to intrinsic 20 000 cm/ţs, needing faster readout.
Photons travel in all directions, needing stronger algorithm and computing.

1D ∆z = v∆t → ~r = ~v∆t 3D
Benda Xu (THU-DEP) OγTPC 2025-08-28 TAUP, Xichang 4 / 14



Green’s Function Analog for a TPC

Linear superposition of outputs.
DTPC(·) is the linear detection operator.
linear differential operator has Green’s
function.

DTPC(ii + i2 + i3 + . . .+ i6) = DTPC(ii) +DTPC(i2) + . . .+DTPC(i6)

Benda Xu (THU-DEP) OγTPC 2025-08-28 TAUP, Xichang 5 / 14



The Trivial Green’s Function

G(xD, yD, t;x, y, z, t0) = δ(x− xD)δ(y − yD)δ(z − v(t− t0))

δ(·) is the Dirac delta function, in reality replaced with finite-resolution Gaussian.
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Green’s Function for Monolithic Liquid Scintillator Detector

G(rPMT, t; r, t0)
PMT location symmetry−−−−−−−−−−−−−−→ R(t− t0; r − rPMT): probe function

A non-trivial function that exhibits an asymptotic inverse-square dependence.
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Characterization of the Probe
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The Quantum Nature of Photon Detection

A sample of photo-electrons on a PMT is from a time-dependent poisson process
ERj(t;~r, t0), its intensity function is superposition of multiple probes.

R(t) =
∑
k

[
Rscintillation

k (t) +RCherenkov
k (t)

]
+RDark Count(t)

First-Principle Bottom-Up Event Reconstruction
L({wi}|E, t0, r) =

∏
i

p[wi|ERi(t; t0, r) + bi]

=
∏
i

∑
j

p(wi|zj)p[zj |ERi(t; t0, r) + bi]

dark noise

waveform
all PE times (sampled)

SPE charge spectrum embedded

total probability

Chuang Xu, Contribution #260; Novel MCP-PMT response NIM A 1055(2023)168506, NIM A 1066(2024)169626.
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High-Resolution Waveform Analysis for Particle Detection
PEs follow an inhomogeneous Poisson process with intensity λφ(t− t0).

200 250 300
time/ns

0.00

0.05

0.10

0.15

lig
ht

 c
ur

ve

t0

(t t0)

z = {t1, t2, }

Figure: Sample PEs from Poisson process
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Figure: Convolve PEs into a waveform
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Yuyi Wang, Contribution #191; arXiv:2403.03156
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Calibration of the Probe

Neural network as universal functional approximation ↔ non-parametric statistics

Calibration of the detector response
Time-dependent Poission point process model as a surrogate to the optical process.
Its intensity function is statistically learned non-parametrically.

From generalized linear model (GLM) to generalized additive model (GAM)

g (E[y|x]) = β0 +

p∑
j=1

βjxj

→ g (E[y|x]) = β0 +

p∑
j=1

fj(xj)

fj are the smooth basis functions.
Basis are expanded with cartesian products.
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Generalized Additive Model on Histograms

x y t nEV nPE
· · · · · · · · · · · · · · ·

x average x-coordinate of a bin
y average y-coordinate of a bin
t t central value of a bin

nEV number of events
nPE number of PEs

Regression formula

nPE ∼ π(λ), log λ = te(x(r, θ), y(r, θ), t) + log(nEV)

→ Learn Rj(t− t0; r, θ), extensible to boosted decision trees and neural networks.

Chuanhui Hao, Contribution #96
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Monolithic Liquid Scintillator as a Compton Camera

Compton
scattering

Photoelectric
effect

Scintillation
photons

Photomultiplier
tube

Reconstruction

Reconstructed gamma-ray trajectory from Compton and photoelectric electrons.
EPJ C 85, 4 (2025): 438, track effect expected for MeV β at JUNO-TAO
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Summary

With faster readout and powerful algorithms, large liquid neutrino detectors could gain
omnidirectional photon time projection tracking capabilities.
Stochastic model by classical statistics, deterministic impulse response by machine
learning (universal functional approximation).

Next
Calibrating the probe by mitigating the effects of PMT dark noise, non-uniform photon
detection efficiency, and transit time spread (TTS).
Promoting cross-experiment collaboration to enhance event reconstruction capabilities for
the DUNE (LArTPC), Hyper-K (water Cherenkov), and JUNO (liquid scintillator)
neutrino detectors.
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Low and high hanging fruits
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ν research enabled by large 20 kt target
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Spline Approximation

Cubic Spline

fj(xj) =

mj∑
k=1

βjkBk(xj) ⇒ fj = Xjβj

Xj : n×mj design matrix
βj : mj × 1 parameter vector∫

[f ′′
j (xj)]

2dxj = βT
j Sjβj
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Ambiguity of direction in 3D

~r = ~v∆t.

1 Hardware approach: measure the direction of incoming photon
I development of lenses for liquid scintillation and Cherenkov detectors

2 Solve the inverse problem with machine learning, in light of computational imaging.
I extract particle interaction tracks from data analysis.
I invertible full probabilistic modeling a.k.a. probabilistic programming

Super-KamiokaNDE
time projection

Integration of the intensity function gives a Poisson field.∫
Rj(t− t0; r, θ)dt = λj(r, θ)
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