Omnidirectional Photon Time Projection with Large Liquid Neutrino Detectors

Benda Xu

Department of Engineering Center for High Energy Physics Tsinghua University

2025-08-28 TAUP, Xichang

Jiangmen Underground Neutrino Observatory

• $52.5\,\mathrm{km}$ is the sweet spot for ν oscillation.

$\bar{\nu}$ Inverse Beta Decay

Benda Xu (THU-DEP) 0γTPC 2025-08-28 TAUP, Xichang

Photon Time Projection at Liquid Scintillation Detectors

From drift electrons to omnidirectional photons

- Speed from drift 1 cm/ts to intrinsic 20000 cm/ts, needing faster readout.
- Photons travel in all directions, needing stronger algorithm and computing.

1D
$$\Delta z = v\Delta t \rightarrow \vec{r} = \vec{v}\Delta t$$
 3D

Green's Function Analog for a TPC

- Linear superposition of outputs.
- \bullet $\mathcal{D}_{\mathsf{TPC}}(\cdot)$ is the linear detection operator.
- linear differential operator has Green's function.

5 / 14

$$\mathcal{D}_{\mathsf{TPC}}(i_i + i_2 + i_3 + \ldots + i_6) = \mathcal{D}_{\mathsf{TPC}}(i_i) + \mathcal{D}_{\mathsf{TPC}}(i_2) + \ldots + \mathcal{D}_{\mathsf{TPC}}(i_6)$$

Benda Xu(THU-DEP) 2025-08-28 TAUP, Xichang

The Trivial Green's Function

$$G(x_D, y_D, t; x, y, z, t_0) = \delta(x - x_D)\delta(y - y_D)\delta(z - v(t - t_0))$$

ullet $\delta(\cdot)$ is the Dirac delta function, in reality replaced with finite-resolution Gaussian.

Benda Xu(THU-DEP) 0γTPC 2025-08-28 TAUP, Xichang

Green's Function for Monolithic Liquid Scintillator Detector

$$G(m{r}_{\mathsf{PMT}},t;m{r},t_0) \xrightarrow{\mathsf{PMT} \ \mathsf{location} \ \mathsf{symmetry}} R(t-t_0;m{r}-m{r}_{\mathsf{PMT}})$$
: probe function

A non-trivial function that exhibits an asymptotic inverse-square dependence.

Green's Function for Monolithic Liquid Scintillator Detector

$$G(r_{\mathsf{PMT}},t;r,t_0) \xrightarrow{\mathsf{PMT} \ \mathsf{location} \ \mathsf{symmetry}} R(t-t_0;r-r_{\mathsf{PMT}})$$
: probe function

A non-trivial function that exhibits an asymptotic inverse-square dependence.

 Benda Xu (THU-DEP)
 OγTPC
 2025-08-28 TAUP, Xichang
 7 / 14

Characterization of the Probe

• The deficits at $\frac{\pi}{4}$ is from the total internal reflection of acrylic-water interface.

NIM A 1057(2023)168692

Characterization of the Probe

- The deficits at $\frac{\pi}{4}$ is from the total internal reflection of acrylic-water interface.
- Photon time of flight from all directions, modified by refraction, reflection and scattering.

NIM A 1057(2023)168692

Characterization of the Probe

- The deficits at $\frac{\pi}{4}$ is from the total internal reflection of acrylic-water interface.
- Photon time of flight from all directions, modified by refraction, reflection and scattering.
- Shape approximates scintillation time profile. $\lambda(t) = R(t; \boldsymbol{r}) \text{ for a specific } (r, \theta).$

8 / 14

NIM A 1057(2023)168692

The Quantum Nature of Photon Detection

• A sample of photo-electrons on a PMT is from a time-dependent poisson process $ER_j(t; \vec{r}, t_0)$, its intensity function is superposition of multiple probes.

$$R(t) = \sum_{k} \left[R_k^{\text{scintillation}}(t) + R_k^{\text{Cherenkov}}(t) \right] + R^{\text{Dark Count}}(t)$$

First-Principle Bottom-Up Event Reconstruction

$$\mathcal{L}(\{\boldsymbol{w}_i\}|E,t_0,\boldsymbol{r}) = \prod_i p[\boldsymbol{w}_i|ER_i(t;t_0,\boldsymbol{r})+b_i] \quad \text{dark noise}$$
 waveform
$$= \prod_i \sum_j p(\boldsymbol{w}_i|\boldsymbol{z}_j)p[\boldsymbol{z}_j|ER_i(t;t_0,\boldsymbol{r})+b_i]$$
 all PE times (sampled)

SPE charge spectrum embedded

Chuang Xu, Contribution #260; Novel MCP-PMT response NIM A 1055(2023)168506, NIM A 1066(2024)169626.

Benda Xu (THU-DEP) O γ TPC 2025-08-28 TAUP, Xichang 9 / 14

High-Resolution Waveform Analysis for Particle Detection

PEs follow an inhomogeneous Poisson process with intensity $\lambda\phi(t-t_0)$.

Figure: Sample PEs from Poisson process

Figure: Convolve PEs into a waveform

10 / 14

Yuyi Wang, Contribution #191; arXiv:2403.03156

Calibration of the Probe

Neural network as universal functional approximation \leftrightarrow non-parametric statistics

Calibration of the detector response

- Time-dependent Poission point process model as a surrogate to the optical process.
- Its intensity function is statistically learned non-parametrically.

From generalized linear model (GLM) to generalized additive model (GAM)

$$g\left(\mathbb{E}[y|x]\right) = \beta_0 + \sum_{j=1}^p \beta_j x_j$$

$$\rightarrow g\left(\mathbb{E}[y|x]\right) = \beta_0 + \sum_{j=1}^p f_j(x_j)$$

- \bullet f_i are the smooth basis functions.
- Basis are expanded with cartesian products.

Generalized Additive Model on Histograms

X	у	t	nEV	nPE

x average x-coordinate of a bin

y average y-coordinate of a bin

t t central value of a bin

nEV number of events

nPE number of PEs

12 / 14

Regression formula

$$nPE \sim \pi(\lambda), \log \lambda = te(x(r, \theta), y(r, \theta), t) + log(nEV)$$

 \rightarrow Learn $R_j(t-t_0;r,\theta)$, extensible to boosted decision trees and neural networks.

Chuanhui Hao, Contribution #96

Monolithic Liquid Scintillator as a Compton Camera

• Reconstructed gamma-ray trajectory from Compton and photoelectric electrons.

EPJ C 85, 4 (2025): 438, track effect expected for MeV β at JUNO-TAO

Summary

- With faster readout and powerful algorithms, large liquid neutrino detectors could gain omnidirectional photon time projection tracking capabilities.
- Stochastic model by classical statistics, deterministic impulse response by machine learning (universal functional approximation).

Next

- Calibrating the probe by mitigating the effects of PMT dark noise, non-uniform photon detection efficiency, and transit time spread (TTS).
- Promoting cross-experiment collaboration to enhance event reconstruction capabilities for the DUNE (LArTPC), Hyper-K (water Cherenkov), and JUNO (liquid scintillator) neutrino detectors.

Low and high hanging fruits

ν research enabled by large $20\,\mathrm{kt}$ target

Cubic Spline

$$f_j(x_j) = \sum_{k=1}^{m_j} \beta_{jk} B_k(x_j) \quad \Rightarrow \quad f_j = X_j \beta_j$$

- X_j : $n \times m_j$ design matrix
- β_j : $m_j \times 1$ parameter vector

$$\int [f_j''(x_j)]^2 dx_j = oldsymbol{eta}_j^T oldsymbol{S}_j oldsymbol{eta}_j$$

Ambiguity of direction in 3D

$$\vec{r} = \vec{v}\Delta t$$
.

- Hardware approach: measure the direction of incoming photon
 - development of lenses for liquid scintillation and Cherenkov detectors
- ② Solve the inverse problem with machine learning, in light of computational imaging.
 - extract particle interaction tracks from data analysis.
 - ▶ invertible full probabilistic modeling a.k.a. probabilistic programming

Super-KamiokaNDE

time projection

Integration of the intensity function gives a Poisson field.

$$\int R_j(t-t_0;r,\theta)dt = \lambda_j(r,\theta)$$