Extending the sensitivity of heavy sterile neutrino searches with solar experiments Yutao Zhu¹, Zhicai Zhang², Wentai Luo On Behalf of Jinping Neutrino Experiment Tsinghua University, Beijing, China ¹zhu-yt24@mails.tsinghua.edu.cn, ²zhicaizhang@tsinghua.edu.cn #### Introduction - To explain the non-zero mass of neutrinos, one convenient way is to add right-handed neutrinos to SM, which can bring neutrino masses in various ways such as Dirac or Majorana mechanism. - As a result of these theories, searches for heavy sterile neutrino v_H from eV to TeV mass range have been performed with many experiments. In this research we discuss methods to further extend the sensitivity in the MeV mass range with solar neutrino detectors. According to the v_H decay position determined by lifetime, we have two methods to search for them: - Method 1: If the lifetime of v_H is intermediate and a sufficient number reach and decay inside the detector, search for e^+e^- signal. - Method 2: If the lifetime of v_H is short, such that the vast majority decay before reaching the detector, search for v_e signal. Two methods to detect v_H ### Method 1: search for ν_H by e^+e^- signal - For v_H decay inside detector, the left figure below shows that we can expect to observe a handful of $v_H \to e^+e^-v_e$ events for most regions where $|U_{eH}|^2 > 10^{-6}$ and 2 MeV $< m_{v_H} < 14$ MeV. - One specifical energy spectrum of e^+e^- from ν_H decay is also given. - Distinct spectral peaks emerge at the tail of the background spectrum for most v_H masses, suggesting that precise energy measurements can enable excellent signal-background discrimination by fitting. The event rate (per year) of e^+e^- from ν_H decay in a 500-ton detector on the earth, for different m_{ν_H} and $|U_{eH}|^2$ The energy spectrum of e^+e^- from ν_H decay specifically with different m_{ν_H} and fixing $|U_{eH}|^2 = 10^{-5}$ ## Method 2: search for ν_H by ν_e signal We focus on two variables to differentiate v_e from v_H decay and solar neutrino background: the v_e energy and direction, which yield markedly distinct distributions for signal versus background events. #### ν_e Energy - v_e signal of the figure is much softer than the background, peaking below 5 MeV. - Distinguishing these signals is challenging since the electron energy from the elastic scattering of ⁸B also peaks at low energies, as the previous plot. The energy spectrum of v_e from v_H decay outside detector for different m_{v_H} and fixing $|U_{eH}|^2 = 0.1$ #### ν_e Direction - For signal v_e , there is a small but significant tail with large solar angles that can exceed typical angular resolution limits (around 25°, cosine around 0.9) of standard detectors. - Right figure below shows that for $|U_{eH}|^2 > 10^{-2}$, there is a large region with at least 10% of ν_e events with $\cos\theta_{\rm Sun} < 0.9$, allowing them to be distinguished from background neutrinos. v_e emission angle $\phi_{ m decay}$ and v_e solar angle $\theta_{ m Sun}$ Distribution of the solar angle for signal v_e for $m_{ u_H}=4$ MeV and $|U_{eH}|^2=0.1$ The ratio of v_e with $\cos\theta_{\rm Sun} > 0.9$ for different m_{ν_H} and $|U_{eH}|^2$ - Considering the ν_e -electron scattering, we estimate the expected event count rate as the right figure. - In most of the phase space where $|U_{eH}|^2 > 10^{-2}$, we expect to observe at least a few v_H events by detecting v_e from its decay. Much of this phase space cannot be explored by searching for e^+e^- signals due to the short lifetime of v_H . Event rate of v_e -electron elastic scattering with a 500-ton detector for v_e signal from v_H decay ### Conclusions - We presents two methods based on MeV ν_H 's decay: one focuses on detecting e^+e^- signals from ν_H decays with an intermediate lifetime, while the other aims to find ν_e from short-lived ν_H decays. - The estimated signal and background event yields indicate the **complementary** sensitivity of both methods. Key variables to distinguish the ν_H signal from solar neutrino events are proposed with their distributions. By combining both methods, it is expected to be sensitive in most of the phase space where $|U_{eH}|^2 > 10^{-6}$ and 2 MeV $< m_{\nu_H} < 14$ MeV for a 500-ton detector over one year. #### References 1. Zhu, Y.; Fu, H.; Luo, W.; Chen, S.; Yang, L.; Zhang, Z. Extending the Sensitivity of Heavy Sterile Neutrino Searches with Solar Neutrino Experiments. <u>arXiv.2507.01675</u>.