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The 3'd generation of TeV instruments made
a revolution in gamma-ray astronomy, and
we have (probably) reached the sensitivity
level required to probe the Galactic sources
of CR

To reveal the properties of the CR accelera-
tor in a gamma-ray source we need a realistic
scenario

Typically one considers hadronic and/or lep-
tonic contributions to the emission

Acceleration of UHE electrons has very dif-
ferent implications for CRs compared to the
acceleration of protons

However, often it is hard to discriminate be-
tween leptonic and hadronic models
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spectral features spectral features
@ synchrotron emission @ pion bump
o Klein-Nishina cutoff o threshold in ~p process
e cooling break @ max energy

electrons lose energy easily thus in secondary particles
the VHE/UHE regimes accelera- ° v
tion competes with (synchrotron) n

@ e

losses, and the maximum energy
is attained when the rate of losses
equals the acceleration rate S
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How fast does particle acceleration proceeds?

(=g

<9

[ =g

(for DSA n = 2m($)" = 2n(5) (5))

Acceleration time: tacc = E/E

Magnetic field B doesn’t change particle en-
ergy
Energy gain for a particle:

mc?d = qv€
Energy gain for ensemble of particles:
E= q\‘/‘g
Acceleration efficiency:
T

tacc = 77(]78(: = 7779

-1_ g€ B _ 3
n ~— E 4qBc Be

Typically £ = TB < B
Trajectories are not straight lines:
VE < €

Acceleration in

Acceleration Efficiency

particle displacement d
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|cle trajectories |

China/Xichang (TAUP2025)

4/15



TAUP 44 How fast does particle acceleration proceeds?

XICHANG

15 Acceleration time: tace = E/E Acceleration Efficiency
= Magnetic field B doesn’t change particle en-
ergy
1= Energy gain for a particle:
mc?d = qv€

w5 Energy gain for ensemble of particles:
E= q\‘/‘g

particle displacement d

= Acceleration efficiency:

tace = anc - 777

n =5 B = B (different electric
C C
aB B | field strength

w Typically € = TB < B

v= Trajectories are not\gtraight lines:
VE < cE

| for DSA n = 2r (L) =2m(2)(9))

v

(different parti- |
|cle trajectories |

J

[It seems impossible to reach 7 — 1 under realistic conditions ’
Q J
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TAUP s Synchrotron Burn-Off Limit

= Acceleration Time:

T —
face =712 = 0.1nErevBg s

= Synchrotron Cooling Time

tsyn ~ 400E7, Bg s

= Maximum Energy

= Cutoff in the Synchrotron Spectrum
300 MeV
n

hw =~ 1.15hwe ~
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Synchrotron Burn-Off Limit
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(Relativistic shock: n — 10(7) | 10* —
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s . o N - - B
== Hillas Criterion g ke
o
oL = e = Synchrotron Losses
E </ o— s =7 ~1g=2
c g g B < 3n" Epg nG
R -1 - T o= Spectral properties
B > 38Epev <71012 Cm) G e.g., via slow synchrotron
cooling
= Variability
e.g., via the source size or (fast) cooling TeVCat Source Types (315 total)
L time )

Microquasar: 1.0 %

Nﬂive Star Cluster: 1.0 %

1BL: 2.9 %

HBL: 17.1% \

Composite SNR: 1.0 %

Globular Cluster: 0.3 %

These basic estimates suggest that the ac- Shell4.1%

. L. . N Superbubble: 1.3 % EHBL: 1.0 %
celeration of PeV electrons is impossible in PR 13% f\\ slazar 13%
compact sources (R ~ AU). SNR/Molec. Cloud: 3.2 % — | TeV halo: 13 %
Are there any compact VHE sources? pARIG29% N\ - ‘:::
= PRS, gamma-ray binary systems \7 FsRQ: 3.2%

BIN: 1.0 %

GRB: 1.6 %

FRI:13 %
UNID: 36.5 %

hitps:/ teveat? teveat o
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System Star Star* P VHE HE X-ray
PSR B1259-63/LS2883 psr O/Be 1237d periodic variable periodic
LS 5039 psr(?) O 3.9d periodic periodic periodic
LS I +61+303 psr(?) Be 27d variable periodic variable
HESS J0632+057 ? Be 320d variable steady(?) variable
HESS J1832-093 ? Be(?) 86d(7?) variable(?) periodic(?) periodic
1FGL J1018.6-5856 ? O 17d variable periodic variable
PSR J2032+4127 psr Be 50yr variable variable variable
LMC P3 ? O 10d periodic periodic variable
Cyg X-1 bh (0] 5.6d flare flare =
Cyg X-3 bh(?) WR 4.8h ?) flare —
SS433 bh A 13d steady steady(?) steady
V4641 Sgr bh B 2.8d  steady(?) - flare
MAXI J1820+070 bh KG 0.7d steady(?) = flare
GRS 19154105 bh RG 33.5d steady(?) steady(?) flare
n Car BG O 5.5yr variable(?) variable variable

L RS Oph ‘WD RG 1.2yr flare flare flare )
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System Star Star* P VHE HE X-ray

Gamma-Ray Binaries

hfsliczl‘OQua,SaIS

Gamma-Ray Emitting BS
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Gamma-Ray Binary Systems
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e Gamma-Ray Binary Systems
: )
10 T T
—~10™ Criteria for Gamma-Ray Binary: M
o Hard non-thermal X-ray emission 1’ |
10" L i
@ Detected TeV emission
= 10" . .
! o Contains luminous star .
14 . . . BT ]
100 e SED is dominated in gamma-rays 0111213
) )
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Criteria for Gamma-Ray Binary:
o Hard non-thermal X-ray emission

e Detected TeV emission
e Contains luminous star

o SED is dominated in gamma-rays

System X-ray VHE Star SED PSR
PSR B1259-63/1.52883 ¢ 4 v v v
LS 5039 v v v 4 v’
LS I +61+303 v v v 4 v’
HESS J0632+057 v 4 v 4 X
1FGL J1018.6-5856 v v v v X
HESS J1832-093 v v v v X
PSR J2032+4127 v v v 4 4
LMC P3 v v v v b 4
Note that + means YES; X means we don’t know
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Criteria for Gamma-Ray Binary:
o Hard non-thermal X-ray emission

e Detected TeV emission

e Contains luminous star

o SED is dominated in gamma-rays

System X-ray VHE Star SED PSR
PSR B1259-63/LS2883 ¢ v v vV =]
LS 5039 v v v v ¢
LS I +614303 v v v Vv
HESS J0632+057 v v v v g
1FGL J1018.6-5856 v v v Vv 7
HESS J1832-093 v v v v g
PSR J20324127 v v v v H
LMC P3 v v v v |E]
Note that ¢ means YES; ¥ means we don’t know
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e Ha

e De

e Co

e SE
Systen PSR
PSR H v
LS 50 v’
LST + v?
HESS X
1FGL X
HESS X
PSR J v
LMC Numerical simulations (Bosch-Ramon+2015) x

Note that + means YES; X means we don’t know
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Criteria for Gamma-Ray Binary:
o Hard non-thermal X-ray emission

e Detected TeV emission

e Contains luminous star

o SED is dominated in gamma-rays

System X-ray VHE Star SED PSR
PSR B1259-63/L.52883 4 v v (4
LS 5039 z v vV v V7
LS I +61+303 p % v v V7
HESS J0632-+057 £ v v v X
1FGL J1018.6-5856 8 4 v v b 4
HESS J1832-093 B v v v X
PSR J2032-+4127 - % v v vV
LMC P3 v v v X
Note that + means YES; ¥ means we don’t know
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BN i \ Steady electron distribution: )
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GRBs as “compactified” PWN

=

- Hydrodynamic process in binary systems appear

~

Compactified PWN in binary systems is a quite old
concept (e.g., Tavani+1994)

One-zone model that accounts for the relevant pa-
rameters was suggested for PSR B1259-63/LS2883
(Kirk+1999)

In compact systems gamma-gamma attenua-
tion plays a critical role (Moskalenko+1994,
Dubus+2006)

One-zone modeling points toward very effi-
cient acceleration in binary systems (e.g.,
Khangulyan+ 2008, Takahashi+2009)

very different from whose in isolated PWNe (Bogo-
valov+2008)

Hybrid radiation-hydrodynamic model can repro-
duce essential features of the spectra and light curve
in LS 5039, but require very efficient acceleration
and complex injection spectrum (e.g., Dubus+2015)

Acceleration in ~y-ray BSs
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tion plays a critical role (Moskalenko+1994,
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(Kirk+1999)

In compact systems gamma-gamma attenua-
tion plays a critical role (Moskalenko+1994,
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Acceleration in ~y-ray BSs
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Acceleration in ~y-ray BSs
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.

v

China/Xichang (TAUP2025)

10 /15



TAUP s Acceleration vs Losses

XICHANG
Emax ~ VBoy/ E2TL <—C‘Hillas upper limit” doesn’t depend on the size!]
~ (-

~ I
.
Y .
o
...... s ¢
. . ) Jsat “\“ﬂ
. shodk o ind
L grocked st
massive star Yse
€ AU-scale om Dubus 2()1'3)

G PC-scale)
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Emax ~ VBoy/ 92TL <—[“Hillas upper limit” doesn’t depend on the size!]
IS N
(The maximum drop of electric potential is, how- | ' Source age: tage = R/fc
ever, only one of the conditions required for ac- eBR ctage eBBR
celeration to this limit. Other constraints include Emax R =
TNacc \ naccﬁ
= Source age: = Conf. 1: tese = R/fc
tace < tage eBR
Emax
= Confinement: NaceB
tace < tesc = Conf. 2! tesc = Rz/ﬁr]DDB, where Dp =
. — rge/3
= Cooling: e B < eBR
acc cool max m
None of these is a necessary condition — one still L . 52
needs an acceleration process that can operate ®= Radiative cooling: teoo1 x E7°R
\With efficiency 7. ) pl+8 eBR ctg R
max Nacc P’MO RO
Constraint from cooling become more important
\on “smaller scales”

J
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1w Electron gyroradius:
rg = 3 x 102EpeyBg'em
== Synchrotron cooling time:
toyn = 0.4Ep % Bg s
= Acceleration time:
tace = 10°7Epev Bg'

15 Acceleration of electrons:
nBa <4 x 1073Ep3,

> Confinement of electrons:
Ba > Epev (note a ~ 2 - 10*2cm)

= Thus one obtains
nEpy <4 x 1073

i.e. one gets n ~ 1 for Epey ~ 0.2

acceleration in LS 5039
R ( (HAWC 2025)
—— HAWC INFC
o1t —— HAWC SUPC
H.E.S.S. INFC
\ H.E.S.S. SUPC
N
mﬁ 10712
§
:
=
B
210713
w
10714
10°! 10° 10! 10%
Energy [TeV]
L J
- - , N
Is it hard to get such an efficient acceleration?
= For DSA the typical estimate is n =
27(c/v)? > 10
= One can get quite efficient acceleration in
some numerical experiments, n ~ 10, but
) still n ~ 1 seems unrealistic )
China/Xichang (TAUP2025)
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Ingredients in the scenario R( (Sketeh for binary pulsar (Dubus 2013))
o Ultrarelativistic wind Y g o
o Relativistic shock N | - . R
o Intense photon field ‘ y “oc\(e(\ uisaX \N\“-
w Relativistic shock means ac- S gpocked st win
celeration of relativistic parti-

cles

== Intense photon field implies
~7 attenuation

4

(
. /2
15 v~ attenuation leads to injec- massive star “So

Zio(;nr Coef secondaries all over the : @%
| - s

What happens to secondaries cre-
ated in the pulsar wind zone?
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[Bosch—Ran)on&Khangulyan 2025) bulk K A
Wind Co-Moving Frame (FF) ulk motion Laboratory Frame (LF)
with T
y/ y Accelerator Main Emitter
UHE emitter(?) UHE emitter(?)
Eacc ¢ = dt
N T
£,
=
Bacc Ig’_
|O
5
wind zone: I, shocked wind:
slow syn. cooling Ig fast syn. cooling
IC cooling I;L IC cooling
:U/ It T
"""""" Racc
L J
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[Bosch—Ran)on&Khangulyan 2025)

Wind Co-Moving Frame (FF) bulk motign

Laboratory Frame (LF)

with T"
/ =0 -
y y Accelerator Main Emitter
UHE emitter(?) UHE emitter(?
|
Eacc
Bacc
wind zone: I, shocked wind:

= 100 GeV gamma rays are attenuated with in the system

= Pairs created in the wind zone, would see a factor of Iyi,q weaker magnetic field, thus synchrotron losses
are suppressed

w If a particle turns by an angle 6 ~ 1/T in the co-moving frame then its energy is strongly changed in the
lab frame
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[Bosch—Ran)on&Khangulyan 2025) bulk K A
Wind Co-Moving Frame (FF ulk motion Laboratory Frame (LF
g
with T"
/ t =20 -
y y Accelerator Main Emitter
UHE emitter(?) UHE emitter(?
|
Eacc 3
7,7()
Bacc
wind zone: I, shocked wind:
—

w5 This process injects particles with energy such that turn by 6 ~ 1/ occurs in the lab frame during the
time Rys/c
= This corresponds to the maximum energy of accelerated particles of eRtsBying & 1/ e?oL

c

i For oL ~ 103% ergs—1, this yields ~ 1PeV
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Summary
o At present, the pulsar scenario is favored for gamma-ray binary systems
o In systems with pulsars, the gamma-ray emission is most likely produced by very-
relativistic electrons upscattering soft photons from the optical companion

o HAWC and LHAASO data point towards the presence of UHE electrons in these sys-
tems, which seems to be forbidden by fast synchrotron losses

o Acceleration of UHE electrons in presence of dense photon and strong magnetic field
poses an interesting challenge for acceleration theories

o Lose vs acceleration collision can be resolved if one assumes that UHE electrons are
accelerated in the pulsar wind zone

o This is a realization of the so-called “converter” acceleration mechanism suggested
by E.Derishev, and it may have important implications for interpretation of UHE
observations: the synchrotron burn-off limit might be violated in sources containing
relativistic outflows (in particular in PWNe)
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