Use of phase sensitive amplifier for the back-action evasion scheme

Science Tokyo^A, Caltech^B, Univ Tokyo^C Kentaro Somiya^A, Yanbei Chen^B, Yohei Nishino^C

Frequency-dependent squeezing

- FDSQ has been implemented in LIGO & Virgo
- Variational Readout is another option but is weak against optical losses

Shot noise and radiation pressure

Quantum-noise sidebands are in-phase to carrier.

- → amplitude fluctuation
- → radiation pressure noise

Quantum-noise sidebands are out-of-phase to carrier.

- → phase fluctuation
- → shot noise

Squeezing

Injecting the carrier and pump beams into a non-linear crystal, either amplitude or phase fluctuation increases and the other one decreases.

$S\begin{bmatrix} \begin{pmatrix} a_{+} \\ a_{-}^{\dagger} \end{pmatrix} \end{bmatrix} = \begin{pmatrix} \cosh r & \sinh r \\ \sinh r & \cosh r \end{pmatrix} \begin{pmatrix} a_{+} \\ a_{-}^{\dagger} \end{pmatrix}$

Squeezing (Optical Parametric Amplification) "Degenerated OPA"

Using an optical cavity as a frequency filter, frequency-dependent squeezing can be realized.

Non-degenerated OPA

$$S\begin{bmatrix} \begin{pmatrix} a_{+} \\ a_{-}^{\dagger} \\ a'_{+} \\ a'_{-}^{\dagger} \end{pmatrix} = \begin{pmatrix} \cosh r & \cdots & \sinh r \\ \vdots & \ddots & \vdots \\ \sinh r & \cdots & \cosh r \end{pmatrix} \begin{pmatrix} a_{+} \\ a'_{-}^{\dagger} \\ a'_{+} \\ a'_{-}^{\dagger} \end{pmatrix}$$

$$S\left[\binom{a_{\text{amp}}}{a_{\text{phase}}}\right] = \begin{pmatrix} \cosh r \times a_{\text{amp}} - \sinh r \times a'_{\text{amp}} \\ \cosh r \times a_{\text{phase}} + \sinh r \times a'_{\text{phase}} \end{pmatrix}$$

A non-degenerated OPA works as a phase-insensitive amplifier.

	device	amplification	excess noise
phase-sensitive amplifier	degenerated OPA	either phase or amplitude	no
phase-insensitive amplifier	non-degenerated OPA	both phase and amplitude	yes

Output filter and output amplifier

Variational readout scheme

- Variational Readout is weak against optical losses
- It would be nice if we can use an amplifier to reduce the loss and realize variational readout
 - → We have found two different ways.

Use of amplifier with variational readout (1)

- Post-processing of phase/amplitude measurements realizes the variational readout
- In this way, the amplifier for each measurement can be a phase-insensitive amplifier

Use of amplifier with variational readout (2)

filter

cavity 2

- Frequency-dependent squeezing on the idler field reduces influence of excess noise at each frequency
- Quantum noise spectrum is the same as the previous one.

Summary

- We introduced 2 ways to use optical amplifiers with variational readout.
- Quantum noise can be slightly improved compared with frequencydependent squeezing that is used in current GW telescopes.