

MeV-scale event-by-event direction reconstruction with JNE 1-ton slow liquid scintillator prototype

Yutao Zhu¹, Wentai Luo², Zhicai Zhang

On Behalf of Jinping Neutrino Experiment Tsinghua University, Beijing, China ¹zhu-yt24@mails.tsinghua.edu.cn, ²luowt1993@gmail.com

I. Introduction

• To advance the exploration of various types of neutrinos, JNE aims to achieve event-by-event MeV-scale neutrino energy and direction reconstruction by Cherenkov light (C-light) and scintillation light (S-light) separation technique.

This work will present the first attempt to reconstruct the direction of individual AmBe γ using JNE 1-ton prototype in Slow Liquid Scintillator (SlowLS) phase.

Isotropic liquid scintillation light

LS detector

✓ Slow LS

C + LS light

Solar v Supernova v

 $0\nu\beta\beta$

Appearance of Jinping 1-ton prototype

Structure of Jinping 1-ton prototype

II. Physical Process

 $d_{\rm Fit}$: reconstructed particle (e^-) direction.

- AmBe γ deposits energy in SlowLS, with C-light and S-light emitted and received by PhotoMultiplier Tubes (PMTs) successively.
- To validate the directional effectiveness of reconstruction, we can check the angular correlation between the two vectors:

SlowLS process

PE Number

PE Time

Mean 25.49 Std Dev 8.034

Ш. JNE 1-ton Prototype

- 60 Novel 8-inch MCP-PMTs
 - U, Th: $< 4 \times 10^{-8} \text{ g/g}$, K: $< 4 \times 10^{-9} \text{ g/g}$
 - High QE: 20% ~ 30%
 - Good TTS: < 1.8 ns
- FADC for PMT waveform readout
- 350 mW/ch, 12-bit, 1 GSps
- Readout board: Bandwidth 300 MHz, 40 Gbps
- The subsequent reconstruction is **performed on the** data derived from the AmBe source placed at the center of the prototype, in SlowLS phase.

8-inch MCP-PMT Readout board

- SlowLS: oil-based (LAB + PPO + bis-MSB) Light yield: 4245 photons/MeV
- S-light time spectrum:

$$n(t) = \frac{\tau_r + \tau_d}{\tau_d^2} \left(1 - e^{t/\tau_r} \right) \cdot e^{t/\tau_d}$$

- Rising time $\tau_r = 1.67$ ns.
- Decay time $\tau_d = 26.59$ ns.

Time profile of S-light and C-light in SlowLS

Waveform Analysis

 $d_{\text{Estimated True}}$: vector connecting event vertex to the AmBe position.

- The output waveform is obtained by convolving the PhotoElectron (PE) with the single PE response of the PMT.
- An empirical formula for
- single PE response:

• Likelihood to fit multi-PE waveform:

$$egin{aligned} \mathscr{L}(n_i^{ ext{Obs}}, t_{ij}, R_{ij}) = & f_{ ext{Poisson}}(n_i^{ ext{Obs}}; n_{ ext{average}}) \cdot \ & \prod_{k= ext{begin}}^{ ext{end}} ext{Gauss}([V_{ik} - \sum_{j=1}^{n_i^{ ext{Obs}}} R_{ij} ext{PE}_{ ext{single}}(k-t_{ij})], \sigma_{ ext{base}}) \end{aligned}$$

- n_i^{Obs} : the PE number of i-th waveform.
- t_{ii} : the waveform onset time

Reference

1. Luo, W.; Liu, Q.; Zheng, Y.; Wang, Z.; Chen, S. Reconstruction Algorithm for a Novel Cherenkov Scintillation Detector. J. Inst. 2023, 18 (02), P02004. https://doi.org/10.1088/1748-0221/18/02/P02004.

IV. Waveform Analysis and Reconstruction

Event Reconstruction $N_{\rm PMT}$ Total number of PMT $\mathcal{L}(n_i^{\text{Obs}}, t_{ij}|E, x, y, z, t_{\text{event}}, \vec{d}_{\text{Fit}}) = P_i^{\text{C}}$ $n_i^{\rm Obs}$ Number of the observed PE **Probability of the Charge and Time Known quantities** Fit parameters

C-light and S-light are reconstructed separately (indirect light and dark noise are also taken into account).

As the right panel, a strong correlation between $oldsymbol{d}_{ ext{Fit}}$ and $oldsymbol{d}_{ ext{Estimated True}}$ was found, showing the first sign of eventby-event direction reconstruction of MeV scale events in liquid scintillator.

V. Summary

- JNE 1-ton prototype provides AmBe calibration data in SlowLS phase for reconstruction.
- A simultaneous reconstruction of energy, vertex, direction and time is performed on the calibration data for MeV scale gamma events.
- The effectiveness of MeV-scale event-by-event direction reconstruction is validated, enabling new approaches to neutrino source directionality measurements and improves background discrimination in MeV-scale neutrino experiments.