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Gemini, draw a picture neutrinos 
going from the Sun to DEAP-3600

What we are looking for & why
How we can make first 40Ar(ν,e)40K 

measurement in DEAP-3600
Lessons for measuring it in future 

experiments
*(not drawn to scale)
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NASA/SDO

p+p→2H+e++νe p+e-+p→2H+νe

2H+p→3He+γ 

3He+3He→4He+2p 3He+p→4He+e++νe

3He+4He→7Be+γ 

7Be+e-→7Li+νe
7Be+p→8B+γ

7Li+p→24He 8B→8Be*+e++νe

8Be*+p→24He

pp Chain

Ar

The sun is mass of incandescent gas, a gigantic nuclear furnace
Where hydrogen is built into helium at a temperature of millions of degrees
 - They Might Be Giants
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40Ar + νe → 40K* + e-

R.S. Raghavan (1986)

Fermi transition

+ several 
Gamow-Teller
transitions

Isobaric analogs → unusually high σ
Metastable state → coincidence tag

Esignal = Ee +  ΣEγ

              = Eν – 1.5 MeV
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40Ar + νe → 40K* + e-

R.S. Raghavan (1986)

Fermi transition

+ several 
Gamow-Teller
transitions

Isobaric analogs → unusually high σ
Metastable state → coincidence tag

Esignal = Ee +  ΣEγ

              = Eν – 1.5 MeV

Reaction properties:
High cross section
Total signal directly reads neutrino energy
Signals ~10 MeV – higher energy than most 

abundant bkgds; rarer bkgds dominate
Meta-stable state can be used to tag above bkgd
Specifically measures νe

Sensitive probe for… 
Solar neutrinos ← this talk!
Core-collapse supernova neutrinos
“Low-energy” atmospheric neutrinos (higher E, 

breakup reactions and others dominate)
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High cross section
Total signal directly reads neutrino energy
Signals ~10 MeV – higher energy than most 

abundant bkgds; rarer bkgds dominate
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Specifically measures νe

Sensitive probe for… 
Solar neutrinos ← this talk!
Core-collapse supernova neutrinos
“Low-energy” atmospheric neutrinos (higher E, 

breakup reactions and others dominate)

Neglecting breakup 
reactions

Hep ν not yet 

observed

DSνB not yet 

observed
Uncertainties at low-E 
set atm ν fog; have not 
been measured yet

8 B ν have been observed. 

High sta
ts s

pectroscopy can probe 

solar physics & ν properties
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However…
This reaction has not yet been measured

Gamow-Teller & Fermi transition 
strengths estimated two ways

Bhattacharya (2009): Using 
40Ar(p,n) forward scattering 

Bhattacharya (1998): Using β 
decay of mirror nucleus 40Ti

PRC 80, 055501 (2009)

NuDat3 40K structure >5.6 MeV

??

?
??
?

?

?

?
?

?
?These details are needed to predict signals in 

future detector, extract physics from νe signals, 
and reconstruct excited 40K state 
Need measurements of this reaction!
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DEAP-3600
Located 2 km underground in SNOLAB
3.3 tonnes of LAr scintillation counter
Contained in 5 cm-thick acrylic vessel
Viewed by 255 PMTs via 45 cm acrylic light guides
Designed to measure ~100 keV nuclear recoils from 

WIMPs, using pulse shape discrimination to tag and 
eliminate electron-scattering backgrounds

Contained in 7.8×7.8 m2 water Cherenkov muon veto

νe
e-

γ γ
γ
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Signal expectation

Rate: (2.21 ± 0.21) evts/(tonne-yr)
Exposure: 7.3 tonne-yrs
Expect: 16.1 ± 1.5 evts

Hep neutrinos 
(rate too low for DEAP)

Dominant uncertainty: 
reaction cross section
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Analysis strategy

Low energy region
Dominated by (n,γ) backgrounds
Use delayed coincidence to tag ~50% 

1.6 MeV γ-ray delayed by τ~500 ns

High energy region
Above most (n,γ) backgrounds
Main bkgds: (n,γ) tails and cosmogenic 

muon signals (after muon veto cuts)
Background rates lower than ν rates

Focus for 1st search
ROI: 10.5-13 MeV ← max expected sig.
+ sidebands to validate bkgd model
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Radiogenic backgrounds
Neutrons are hard (even when they’re soft)

Two approaches
Re-scaling AmBe neutrons (w/ corrections) Fitting simulated neutrons to data

AmBe data

Carl Rethmeier’s PhD thesis, Carleton University (2021)
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Radiogenic backgrounds
Neutrons are hard (even when they’re soft)

Re-scaling AmBe neutrons (w/ corrections) Challenges
AmBe spectrum much harder than bkgd neutrons
AmBe neutrons start outside steel vessel; most 

neutrons start in PMTs, other components
Differences are minor < 10 MeV, important in ROI
Different neutron sources illuminate different 

materials, hence different targets for (n,γ)
High-energy neutrons are more likely to induce 

(n,2n) and correlations between (n,γ) and (n,nγ). 
Usually O(100 μs) apart, but prompt happens!

Hot AmBe source → high pilup rate

Investigating these using Geant4 simulations, but… 
G4 doesn’t always get nuclear level structures 
right! Some non-physical transitions on Ar nuclei

Impedes corrections to AmBe data
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Radiogenic backgrounds
Neutrons are hard (even when they’re soft)

Fitting simulated neutrons to data

AmBe data

Carl Rethmeier’s PhD thesis, Carleton University (2021)

Procedure
Simulate PMT neutrons in Geant4 ← dom. source
Create signal spectra for each element
Let normalization float within 5× of sim. prediction
    Accounts for deviations in material illumination, 

inaccuracies in G4 cross sections, etc.
Fold into Gaussian response function & fit to data

Challenges
Inaccuracies in Geant4 neutron physics
(n,γ) cascade modeled poorly by default G4 models
Detector response depends on event topology; not 

accounted for in Gaussian response function
Limited calibration above ROI – AmBe (n,γ) below
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G4CASCADE
Code for Allowing Simulation of n-Capture and De-excitation with ENSDF

Uses CapGam ENSDF level 
structure to simulate de-
excitation cascade
Reproduces most (n,γ) lines
Correlates γ-rays
  → conserves energy

github.com/UCRDarkMatter/CASCADE
arXiv:2408.02774 
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G4CASCADE improves (n,γ) modeling
Code for Allowing Simulation of n-Capture and De-excitation with ENSDF

Default Geant4 Model
Preliminary

G4CASCADE

DEAP-3600
AmBe (α,n) calibra�on data

Excess due to incorrect
γ-ray correla�ons

Devia�on due to known 
inaccuracy in detector 
response model

Excesses due to 
energy non-
conservation 
with G4NDL are 
fixed with 
G4CASCADE
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Cosmogenic backgrounds: Muons are messy
A. Empl et al. JCAP08(2014)064

μ

cos(angle btwn neutron & μ track)

Mei & Hime, PRD73053004(2006)

Cosmogenic muons produce large, energetic showers, 
which can enter the detector even if the muon misses 

Muons that enter the LAr can activate isotopes with 
high-energy decays after muon is long gone



  16

Cosmogenic backgrounds: Strategy

μ

Analysis strategy
Tag muons in 7.8×7.8 m2 water Cherenkov muon veto
Background estimation strategy
Use Geant4 and FLUKA to generate μ showers in rock 
around detector. Estimate bkgd rate surviving veto cut
Generate muons in 300×300 m2

 area in rock above 
detector, propagate muons and let shower evolve
Count event rate in ROI and 13–20 MeV sideband vs. 
energy deposited/Cherenkov photons in veto
Calculate bkgd rate after stringent veto cuts, and use 
rate with veto coincidences and in sideband to validate

Comparable backgrounds from
Prompt showers, where μ misses/glances veto
Delayed radioisotope decays
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Status and challenges

Prelim bkgds, for 
illustrative 
purposes only

Status: ironing out final details
Parallel background estimates are starting 
to converge, and we are finalizing 
background model & systematics
Expected background rate is converging 
well below expected signals in high-
energy ROI, though only expect a few νe’s
Manuscript under preparation
Challenges we tackled for this analysis
Radiogenic & cosmogenic bkgds are hard 
to model, many uncertainties. Combining 
data and simulation approaches helped
Key elements for radiogenic bkgd: Ni, N, 
Cr, Cl, Si, Fe, B, Ar (incl (n,γ)+(n,nγ) pileup)
Even with a muon veto, cosmogenic 
bkgds are significant
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You can’t spell “solar neutrinos” 
without “LAr”

Using νe CC – in some cases complemented by CEνNS – future LAr detectors may also be  
observatories for solar, supernova, and low-energy atmospheric neutrinos

DEAP-3600 DarkSide-20k Argo DUNE
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END
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