

Measuring ⁴⁰Ar-solar neutrino charged-current interactions in the DEAP-3600 dark matter detector

Shawn Westerdale with the DEAP Collaboration TAUP 2025 – Xichang, China 26 August, 2025

Gemini, draw a picture neutrinos going from the Sun to DEAP-3600

pp Chain

The sun is mass of incandescent gas, a gigantic nuclear furnace Where hydrogen is built into helium at a temperature of millions of degrees - They Might Be Giants

$^{40}\text{Ar} + \text{V}_{\text{e}} \rightarrow ^{40}\text{K}^* + \text{e}^{\text{-}}$

$^{40}\text{Ar} + \text{V}_{\text{e}} \rightarrow ^{40}\text{K}^* + \text{e}^{-}$

Metastable state \rightarrow coincidence tag

Reaction properties:

High cross section

Total signal directly reads neutrino energy

Signals ~10 MeV – higher energy than most
abundant bkgds; rarer bkgds dominate

Meta-stable state can be used to tag above bkgd

Specifically measures v_e

Sensitive probe for...

Solar neutrinos ← this talk!

Core-collapse supernova neutrinos

"Low-energy" atmospheric neutrinos (higher E, breakup reactions and others dominate)

(9964%)

Metastable state → coincidence tag

However...

This reaction has not yet been measured

Gamow-Teller & Fermi transition strengths estimated two ways

Bhattacharya (2009): Using ⁴⁰Ar(p,n) forward scattering

Bhattacharya (1998): Using β decay of mirror nucleus ^{40}Ti

These details are needed to predict signals in future detector, extract physics from v_e signals, and reconstruct excited ⁴⁰K state

Need measurements of this reaction!

NuDat3 40K structure > 5.6 MeV

DEAP-3600

Located 2 km underground in SNOLAB
3.3 tonnes of LAr scintillation counter
Contained in 5 cm-thick acrylic vessel
Viewed by 255 PMTs via 45 cm acrylic light guides
Designed to measure ~100 keV nuclear recoils from
WIMPs, using pulse shape discrimination to tag and
eliminate electron-scattering backgrounds
Contained in 7.8×7.8 m² water Cherenkov muon veto

Signal expectation

Analysis strategy

Low energy region

Dominated by (n,γ) backgrounds Use delayed coincidence to tag ~50% 1.6 MeV γ -ray delayed by τ ~500 ns

High energy region

Above most (n,γ) backgrounds

Main bkgds: (n,γ) tails and cosmogenic muon signals (after muon veto cuts)

Background rates lower than v rates

Focus for 1st search

ROI: 10.5-13 MeV ← max expected sig. + sidebands to validate bkgd model 9

Radiogenic backgrounds

Neutrons are hard (even when they're soft)

Two approaches

Re-scaling AmBe neutrons (w/ corrections)

Fitting simulated neutrons to data

Radiogenic backgrounds

Neutrons are hard (even when they're soft)

Re-scaling AmBe neutrons (w/ corrections)

Challenges

AmBe spectrum much harder than bkgd neutrons
AmBe neutrons start outside steel vessel; most
neutrons start in PMTs, other components
Differences are minor < 10 MeV, important in ROI
Different neutron sources illuminate different
materials, hence different targets for (n,γ)
High-energy neutrons are more likely to induce
(n,2n) and correlations between (n,γ) and (n,nγ).
Usually O(100 μs) apart, but prompt happens!
Hot AmBe source → high pilup rate

Investigating these using Geant4 simulations, but... G4 doesn't always get nuclear level structures right! Some non-physical transitions on Ar nuclei

Impedes corrections to AmBe data

Radiogenic backgrounds

Neutrons are hard (even when they're soft)

Fitting simulated neutrons to data

Carl Rethmeier's PhD thesis, Carleton University (2021)

Procedure

Simulate PMT neutrons in Geant4 ← dom. source Create signal spectra for each element Let normalization float within 5× of sim. prediction Accounts for deviations in material illumination, inaccuracies in G4 cross sections, etc.

Fold into Gaussian response function & fit to data

Challenges

Inaccuracies in Geant4 neutron physics
(n,γ) cascade modeled poorly by default G4 models
Detector response depends on event topology; not
accounted for in Gaussian response function
Limited calibration above ROI – AmBe (n,γ) below

G4CASCADE

Code for Allowing Simulation of n-Capture and De-excitation with ENSDF

G4CASCADE improves (n,γ) modeling

Code for Allowing Simulation of n-Capture and De-excitation with ENSDF

Cosmogenic backgrounds: Muons are messy

Cosmogenic muons produce large, energetic showers, which can enter the detector **even if the muon misses**

Muons that enter the LAr can activate isotopes with high-energy **decays after muon is long gone**

Cosmogenic backgrounds: Strategy

Analysis strategy

Tag muons in 7.8×7.8 m² water Cherenkov muon veto

Background estimation strategy

Use Geant4 and FLUKA to **generate** μ **showers** in rock around detector. Estimate bkgd rate surviving veto cut

Generate muons in 300×300 m² area in rock above detector, **propagate muons and let shower evolve**

Count event rate in ROI and 13–20 MeV sideband vs. energy deposited/Cherenkov photons in veto

Calculate bkgd rate after stringent veto cuts, and use rate with veto coincidences and in sideband to validate

Comparable backgrounds from Prompt showers, where μ misses/glances veto **Delayed radioisotope decays**

Status and challenges

Status: ironing out final details

Parallel background estimates are starting to converge, and we are finalizing background model & systematics

Expected background rate is converging well below expected signals in high-energy ROI, though only expect a few v_e's

Manuscript under preparation

Challenges we tackled for this analysis

Radiogenic & cosmogenic bkgds are hard to model, many uncertainties. Combining data and simulation approaches helped

Key elements for radiogenic bkgd: Ni, N, Cr, Cl, Si, Fe, B, Ar (incl $(n,\gamma)+(n,n\gamma)$ pileup)

Even with a muon veto, cosmogenic 17 bkgds are significant

You can't spell "solar neutrinos" without "LAr"

Using v_e CC – in some cases complemented by CEvNS – future LAr detectors may also be observatories for solar, supernova, and low-energy atmospheric neutrinos

DEAP-3600

DarkSide-20k

Argo

18

DEAP Collaboration:

95 researchers in Canada, Germany, Italy, Mexico, Poland, Russia, Spain, UK, USA

