

Readout Electronics on Waveform Digitization and High-precision Time Measurement

Jiajun Qin, Zhe Cao, Jiaming Li, Lei Zhao*

Modern Physics Department, USTC
State Key Laboratory of Particle and Electronics, USTC
26/08/2025

Outline

- Introduction
- Waveform Digitization based on Time-Interleaved ADC
- Waveform Digitization based on Switched Capacitor Array
- High-precision TDC based Time Measurement
- Summary

Introduction

- The basic information need to be measured in particle physics experiments
 - Charge, time, shape, count, etc.
- The classical charge & time measurement methods
 - Charge measurement: shaping and peak detection, ToT
 - Time measurement: discrimination + TDC
 - Each measurement needs a dedicated circuit
- Waveform Digitization
 - Raw waveforms from detector carry the most comprehensive information
 - Flexible algorithms can be used in the digital signal processing to get interested information
 - To be proven to have higher precision, especially in time measurement

Waveform Digitization Techniques

FADC

- High-speed sampling & high-speed quantization
- Small latency, no dead time, high resolution
- TIADC technique to boost sample speed
- High power consumption

SCA

- Switched Capacitor Array
- High-speed sampling & low-speed quantization
- Low power consumption and high channel density
- Work in trigger mode

Outline

- Introduction
- Waveform Digitization based on Time-Interleaved ADC
- Waveform Digitization based on Switched Capacitor Array
- High-precision TDC based Time Measurement
- Summary

TIADC

- Time-Interleaved ADC
 - M parallel ADCs with sampling rate of Fs → M·Fs
 - Sampling phase if shifted by a fixed interval
 - Multiply the sampling rate and break through the sampling speed limitations of a single ADC

6

- Mismatch errors in TIADC
 - Offset Error: the difference between ground values
 - Gain Error: the difference between amplitude gains, from analog input to digital output
 - Phase Error: the difference between the sampling intervals of every two consecutive channel ADCs

Mismatch errors deteriorate the system performance and limit its applicability.

Mismatch Error

The influence of mismatch error on the system spectrum

- For narrow band signals, mismatch errors shrink to constants, easier to be corrected
- For wide band signals, mismatch errors vary with input frequency, making the correction complex

Mismatch Error Correction

- The Perfect Reconstruction Filter can be approximated using FIR filter in the hardware
 - Each sampling channel has a FIR filter
- FIR implementation
 - Sampling rate of the ADC is much higher than the maximum operating frequency of an FPGA
 - Parallelization should be carried out to reduce the requirement for operating frequency

20-Gsps 12-bit TIADC verification system

The mismatch errors have been effectively eliminated within a wide bandwidth range.

Outline

- Introduction
- Waveform Digitization based on Time-Interleaved ADC
- Waveform Digitization based on Switched Capacitor Array
- High-precision TDC based Time Measurement
- Summary

Switched Capacitor Array

SCA Operating Principle

• DRS4 ASIC

Parameters	Value
Sampling rate	0.7 ~ 6 Gsps
Number of channel	8+1
Sampling Depth	1024
Input Range	1 V
Voltage Noise	0.35 mV RMS
Analog BW	950 MHz

DRS4 based Waveform Digitization Electronics

Electronics structure

- Analog Front-end Electronics (AFE)
 - Low noise, high bandwidth preamp
 - Placed close to detectors

- Waveform Digitization Module (WDM)
 - DRS4 ASICs
 - ADCs
 - FPGA

Analog Front End

- AFE for MRPC
 - Full differential
 - First Stage
 - ✓ RF amplifier, 20 dB gain
 - ✓ Ultralow noise, high bandwidth
 - Second Stage
 - ✓ OPA, adjustable gain

AFE for MRPC Detector

- Single-end
 - ✓ RF amplifier, Fixed gain
 - ✓ Ultralow noise, high bandwidth

AFE for PICOSEC-Micromegas Detector

Test Results

Waveform capture

Oscilloscope: Lecroy 760 Zi-A

- 6 GHz ABW
- 5 Gsps (40 Gsps)

Test Results

Time resolution of Digitization Module

Time resolution of readout electronics (AFE + WDM)

Self-developed SCA ASIC

- To integrate the A/D converter into the ASIC
- To implement the independent trigger for each channel

Parameters	Value
Sampling rate	1~5 Gsps
Number of channel	8
Sampling Depth	256
Input Range	1 V
Voltage Noise	< 1 mV RMS
ADC resolution	12 bits @ 1 GHz
Conversion time	4 µs
Trigger	External

Test Results – DC performance

Outline

- Introduction
- Waveform Digitization based on Time-Interleaved ADC
- Waveform Digitization based on Switched Capacitor Array
- High-precision TDC based Time Measurement
- Summary

Jitter Contribution

$$jitter_{electronics} = \sqrt{jitter_{a \& d}^2 + jitter_{TDC}^2}$$

TDC jitter

$$jitter_{TDC} = \sqrt{jitter_q^2 + jitter_{noise}^2 + jitter_{clock}^2}$$

$$jitter_q = 0.5 \times \frac{T_{LSB}}{\sqrt{2}} \approx 0.35 T_{LSB}$$

- Small TDC bin size
- Low clock jitter

Amplification and Discrimination

16 channels

parameters	performance
Signal Range	100fC-2pC
Noise	< 5000 e- rms
Power	< 30 mW/ch
Output interface	LVDS

NINO

8 channels

- Input impedance matching
- Saturation amplification with 4-stage amplifiers
- Adjustable threshold voltage
- Low noise, low power consumption
- Pulse stretcher (pulse with > 10 ns)

2025/8/26 20

FPGA TDL TDC

TDL(Tapped delay line) TDC

- Dedicated fast carry chain
- DFFs sample the state of the chain
- Encoding and readout

XC7A200T FPGA

- CARRY4, four taps
- Average bin size is ~18 ps
- Initial precision: ~15 ps

Precision Improvement (1)

Ultra-wide bin elimination

22

- Constrain the TDL within a clock region
 - Start from the bottom of a clock region
 - Choose a proper clock frequency (>300 MHz for Artix-7 FPGA)

~10 ps precision is achieved

Precision Improvement (2)

Further improve the precision

Reduce the bin size

- Upgrade the FPGA
 - Artix-7 -> Kintex-7
 - •Averaged bin size: 18 ps -> 12 ps

Multi-measurement

- Multiple parallel TDC
- Double-chain

XC7K325T Clock frequency: 480 MHz

~4 ps precision is achieved

2025/8/26 23

Test Results

2025/8/26

Electronics precision: < 10 ps

• 100 fC-2 pC

Time precision: ~ 30 ps

- Cosmic test
- ToF between two layers
- with time walk correction

Self-developed ASICs

Amplification and Discrimination ASIC

	Performance
CMOS process	180nm
Number of channels	8
Input impedance (Ω)	40~200
Jitter (ps, RMS)	<10
Power consumption (mW / chn)	<25

TDC ASIC

	Performance
CMOS process	180nm
Number of channels	16
Dynamic range	5.12 μs
precision	< 7.5 ps

25

Self-developed ASICs

LATIC: LGAD Amplification and Timing IC(A readout ASIC for LGAD sensor)

▶ 5×5 prototype

TDC: jitter < 10ps</p>

Analog + TDC: jitter < 20ps @10fC 4pF</p>

Summary

- TIADC based waveform digitization
 - Proposed a broadband mismatch error correction method
 - A 20-Gsps 12-bit TIADC system is designed and evaluated
- DRS4 based waveform digitization electronics
 - Better than 10 ps RMS timing resolution is achieved for MRPC and PICOSEC-Micromegas signals
- FPGA-TDC based high precision time measurement electronics
 - Double-chain FPGA TDC with Kintex-7: ~ 4ps RMS
 - NINO + FPGA-TDC: < 10 ps @ 200 fC~2 pC
- Self-developed ASIC
 - SCA ASIC: 5 Gsps sampling rate, < 7 ps RMS
 - Amplification and Discrimination ASIC: < 10 ps RMS, @200 fC-2 pC
 - TDC ASIC: < 7.5 ps RMS

Thank you for your attention!