Compact Four-degree-of-freedom Seismometer with Capacitive readout

PHYS. REV. APPLIED 23, 044030 (2025)

Yulin Xia (夏煜林)

Supervisor: Haixing Miao (缪 海 兴)

Department of Physics, Tsinghua University

2025.08.28 Xichang Sichuan

Outline

- Background
- Mechanical design
- Motion Sensing design
- Noise Budget and Measurement
- Conclusion

Background

- Ground-base high-precision
- Gravitational-wave observatory
 - Advance LIGO 10^{-14} m RMS
 - Seismic noise 10^{-6} m RMS
- Active vibration isolation system
 - Seismometer

- Background
- Mechanical design
- Motion Sensing design
- Noise Budget and Measurement
- Conclusion

Test Mass design

- Inverted pendulum
 - Size: 8.8cm cube
 - Eigenmode:
 - 0.86Hz, 3.75Hz

- Four-degree-of-freedom response
 - (X, RY) & (Y, RX)

Test Mass design

• Inverted pendulum design

• Two Bending Point Model

Dynamical Model

First Mode: $\alpha * \beta > 0$

Second Mode: $\alpha * \beta < 0$

Two Bending Point Model

Dynamical Model

Mechanical Transfer Function matrix

$$\begin{bmatrix} x_u \\ x_l \\ y_u \\ y_l \end{bmatrix} = \begin{bmatrix} M_{\text{tot}} & 0 \\ 0 & M_{\text{tot}} \end{bmatrix} \begin{bmatrix} x_g \\ \theta_{y_g} \\ y_g \\ \theta_{x_g} \end{bmatrix}$$

- Background
- Mechanical design
- Motion Sensing design
- Noise Budget and Measurement
- Conclusion

- Capacitive sensing
 - Capacitor pair

•
$$C_1 \approx C_0 \left(1 - \frac{\Delta d}{d_0}\right)$$
, $C_2 \approx C_0 \left(1 + \frac{\Delta d}{d_0}\right)$

- Differential capacitor bridge
 - $V \propto |C_1 C_2| = 2\Delta C \approx \frac{2C_0}{d_0} \Delta d$.

High-frequency Modulated Bridge

For two differential capacitors $C_1=C_0+\Delta C$ and $C_2=C_0-\Delta C$, then

$$U_{\rm S} = -\frac{2\omega^2 L U_{\rm M}}{1 - 2\omega^2 L C_0} \Delta C.$$

And choose a modulation frequency $\omega=rac{1}{\sqrt{LC_0}}$,

$$U_{\rm S} = 2U_{\rm M} \frac{\Delta C}{C_0} = 2U_{\rm M} \frac{\Delta d}{d_0}.$$

Then obtain $\frac{U_S}{\Delta d}=1.80\times 10^4~{
m V/m}$ as $d_0=500~{
m \mu m}$ and $U_M=4.5~{
m V.}$

- High-frequency Modulated Bridge
 - Modulation Frequency @178 kHz
 - Amplifier Gain = 400
 - Analog Demodulation (AD630 Chip)
 - Physical Parameters:
 - Driving Voltage $U_M = 4.5V$
 - Gap = 0.5 mm

• Displacement-to-Voltage Calibration

Theor. $7.20 V/\mu m$

Exp. $7.18 \pm 0.08 \text{ V/}\mu\text{m}$

- Range: $\pm 1 \mu m$
- Resolution: 16 pm @10Hz
- Dynamic Range: 102 dB

1/f low-frequency component and a flat high-frequency white-noise

$$PSD = 5.38^2 \left(1 + \frac{0.02 \text{ Hz}}{f}\right) \left[\frac{\text{pm}^2}{\text{Hz}}\right].$$

- Background
- Mechanical design
- Motion Sensing design
- Noise Budget and Measurement
- Conclusion

- Two Usage Scenario:
 - Low-angular-motion Scenario: 2D seismometer

$$\begin{bmatrix} x_u \\ x_l \end{bmatrix} \approx \begin{bmatrix} \mathsf{M}_{\mathsf{tot}}[1,1] \\ \mathsf{M}_{\mathsf{tot}}[2,1] \end{bmatrix} x_g, \qquad \begin{bmatrix} y_u \\ y_l \end{bmatrix} \approx \begin{bmatrix} \mathsf{M}_{\mathsf{tot}}[1,1] \\ \mathsf{M}_{\mathsf{tot}}[2,1] \end{bmatrix} y_g.$$
 Low-angular-motion approximation: $\frac{g}{\omega^2} \theta_{x_g} \ll y_g, \frac{g}{\omega^2} \theta_{y_g} \ll x_g.$

High-angular-motion Scenario: 4D seismometer

$$\begin{bmatrix} x_g \\ \theta_{y_g} \\ y_g \\ \theta_{x_g} \end{bmatrix} = \begin{bmatrix} M_{\text{tot}}^{-1} & 0 \\ 0 & M_{\text{tot}}^{-1} \end{bmatrix} \begin{bmatrix} x_u \\ x_l \\ y_u \\ y_l \end{bmatrix}$$

• Low-angular-motion Usage: 2D Mode

Noise comparison in 2D Mode

• High-angular-motion Usage: 4D Mode

Noise comparison in 4D Mode

To obtain angular motion, two T120s are spatially separated along x-axis, separated by distance ΔL . Then the angular motion is estimated by $\theta_{T120}=(z_1-z_2)/\Delta L$. The two-degree-of-freedom transfer function matrix can be written as

$$\begin{bmatrix} x_{\text{T120}} \\ \theta_{\text{T120}} \end{bmatrix} = \begin{bmatrix} 1 & \frac{g}{\omega^2} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_g \\ \theta_{y_g} \end{bmatrix}.$$

The decoupled noise spectrum for the translational and angular motion can be obtained by inverting the above matrix, leading to

$$S_{\text{T120}}^{x} = S_{\text{T120}} \left(1 + \frac{2g^2}{\omega^4 \Delta L^2} \right),$$

$$S_{\text{T120}}^{\theta} = S_{\text{T120}} \frac{2}{\Delta L^2}.$$

- Background
- Mechanical design
- Motion Sensing design
- Noise Budget and Measurement
- Conclusion

Conclusion

- Compact size
- Low frequency performance
- Four-degree-of-freedom response

- Active vibration isolation system
- Inertial control of satellites

Thank you