Gravitational waves from preheating in the early Universe

Anna Tokareva Hangzhou Institute for Advanced Study (China)

Based on:

- A. Tokareva, 'Gravitational waves from inflaton decay and bremsstrahlung, arXiv:2312.16691 (PLB)
- ... ongoing work

Realization of inflation and reheating

$$p = -\rho.$$
 $a(t) = \operatorname{const} \cdot e^{H_{vac} t}$

$$S = \int d^4x \sqrt{-g} \left(\frac{M_P^2}{2} R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) \right)$$

$$\rho = \frac{1}{2}\dot{\phi}^2 + V(\phi),$$

Slowly rolling scalar field is a solution!

$$p = \frac{1}{2}\dot{\phi}^2 - V(\phi).$$

Oscillations after inflation decay to the SM particles reheating of the Universe

Reheating temperature is unknown: from 1 GeV to 1016 GeV

EFT of inflaton and gravity

Expansion around the flat space:

$$S = \int d^4x \sqrt{-g} \left(\frac{M_P^2}{2} R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) \right)$$

$$S_{NR} = \int d^4x \sqrt{-g} \left(\frac{\phi}{\Lambda_1} R_{\mu\nu\lambda\rho} R^{\mu\nu\lambda\rho} + \frac{\phi}{\Lambda_2} R_{\mu\nu} R^{\mu\nu} + \frac{\phi}{\Lambda_3} R^2 + \frac{1}{\Lambda_4^2} G_{\mu\nu} \partial^\mu \phi \partial^\nu \phi \right)$$

$$S_{int}^{SM} = \int d^4x \sqrt{-g} \left(-|D_\mu H|^2 + \mu \phi H^\dagger H + \frac{1}{\Lambda_5^2} G_{\mu\nu} D^\mu H^\dagger D^\nu H \right)$$

Leading contribution to graviton production after inflation?

EFT of inflaton and gravity

$$S = \int d^4x \sqrt{-g} \left(\frac{M_P^2}{2} R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) \right) \qquad \text{Decay to gravitons} \qquad \Gamma = \frac{m^7}{32\pi M_p^4 \Lambda_1^2}$$

$$S_{NR} = \int d^4x \sqrt{-g} \left(\frac{\phi}{\Lambda_1} R_{\mu\nu\lambda\rho} R^{\mu\nu\lambda\rho} + \frac{\phi}{\Lambda_2} R_{\mu\nu} R^{\mu\nu} + \frac{\phi}{\Lambda_3} R^2 + \frac{1}{\Lambda_4^2} G_{\mu\nu} \partial^\mu \phi \partial^\nu \phi \right)$$

$$S_{int}^{SM} = \int d^4x \sqrt{-g} \left(-|D_\mu H|^2 + \mu \phi H^\dagger H \right) + \underbrace{\frac{1}{\Lambda_5^2} G_{\mu\nu} D^\mu H^\dagger D^\nu H}_{\text{reheating}} \right)$$
 bremsstrahlung

Other operators are suppressed by higher powers of Λs

Results are valid for ANY UV completion for quantum gravity

Gravitational waves from inflaton decay

$$\frac{d\Omega_{GW}}{d\log E} = \frac{16E^4}{M^4} \frac{\rho_{reh}}{\rho_0} \frac{\Gamma_{GW}}{H_{reh}} \frac{1}{\gamma(E)} e^{-\gamma(E)}$$

$$\gamma(E) = \left(\left(\frac{g_{reh}}{g_0} \right)^{1/3} \frac{T_{reh}}{T_0} \frac{2E}{M} \right)^{3/2}$$

A. Koshelev, A. Starobinsky, AT, PLB, arXiv:2211.02070

$$h_c(f) = \sqrt{\frac{3H_0^2}{\pi f^2}} \frac{d\Omega_{GW}}{df}.$$

Graviton bremsstrahlung during reheating

$$G(k) = \frac{\partial \Gamma}{\partial k} = A \frac{(m-2k)^2}{m \, k}, \ A = \frac{1}{64 \pi^3} \frac{\mu^2}{3 M_p^2}$$

Not sensitive to inflaton-graviton coupling

$$G(k) = \frac{\partial \Gamma}{\partial k} = A \frac{(m-2k)^2}{m k} + B_{UV}(k) \quad A = \frac{1}{64\pi^3} \frac{\mu^2}{2M_p^2} \left(\frac{m^2}{\Lambda_5^2} + 1\right)^2$$

$$\frac{d\rho_{GW}}{dk} = \int \frac{kdN}{a_0^3} = \int dt \frac{kn_{\phi}(t)a(t)^3}{a_0^3} G(k\frac{a_0}{a(t)})$$

$$\begin{split} B_{UV}(k) &= \frac{1}{64\pi^3} \frac{\mu^2}{2M_p^2} \frac{2(m-2k)^2}{15\Lambda_5^2} \left(\frac{m \left(7k-10m\right)}{\Lambda_5^2} - 10 \right) \\ n_\phi &= \frac{\rho_{reh}}{M} \left(\frac{a_{reh}}{M} \right)^3 e^{-\Gamma_{tot}t} \end{split}$$

Limits on GW frequencies

$$\frac{d\Omega_{GW}}{d\log k} = \frac{k^2}{M\,H_{reh}} \frac{a_{reh}^2}{a_0^2} \frac{\rho_{reh}}{\rho_0} \int_{z_{min}}^{z_{max}} dz \, G(kz \frac{a_0}{a_{reh}}) z^{-3/2} e^{-2z^{-3/2}/3}$$

- Kinematic bound comoving momentum is less than m/2
- Causality requirement no superhorizon gravitons!
- Gravitons were emitted between inflation and reheating

What if the quantum gravity scale is lower?

- GW signals for inflaton mass m=10¹³ GeV
- The shape does not change, the amplitude is becoming higher
- The unitarity breaking scale is $\Lambda_{UV} = (\Lambda_5 M_P)^{1/2} > m$
- From Λ_{UV} =10¹⁵ GeV tension with N_{eff} bound

Reheating-dependend bounds on quantum gravity scale!

Graviton production from preheating

The leading EFT interaction:

$$L_{int} = 4M_P^2 \beta (R_{\mu\nu\lambda\rho}^2 - 4R_{\mu\nu}^2 + R^2)\phi$$

The dominant effect: Hubble parameter can quickly drop down

The mode equation for graviton:

$$\begin{split} h(t) \bigg(-\frac{8\beta H k^2 \sqrt{-H'} M_P}{a^2} + \frac{4\beta k^2 \sqrt{-H'} H'' M_P}{a^2 H'} + \frac{k^2}{a^2} - \frac{9H^2}{2} - 24\beta H \sqrt{-H'} H' M_P \\ -\frac{3H'}{2} - \frac{2\beta H^{(3)} H \sqrt{-H'} M_P}{H'} - \frac{12\beta H^2 \sqrt{-H'} H'' M_P}{H'} \\ + \frac{\beta H \sqrt{-H'} \left(H''\right)^2 M_P}{\left(H'\right)^2} - 8\beta \sqrt{-H'} H'' M_P \bigg) + h''(t) = 0 \end{split}$$

EFT rules: keep only first order terms in β!

Estimating the graviton production

Towards the analytically solvable model

$$H(t) = H_0 - H_r anh(bt)$$
 $b \gg H_0$ - inverse duration of the preheating stage

$$h''(t) + h(t) \left(\frac{k^2}{a^2} + 2b^2 \beta H_0 \sqrt{H_r b} M_P \left(3 - \cosh(2bt) \right) \operatorname{sech}^3(bt) \right) + O(b) = 0$$

$$\frac{d\Omega_{GW}}{d(\log k)} = \frac{\Omega_{rad}}{6\pi^2 M_P^2} \left(\frac{g_0}{q_r}\right)^{1/3} q^2 |B(q)|^2$$

The peak feature can be approximated as

$$h''(t) + h(t) \left(\frac{k^2}{a^2} + 4b^2 \beta H_0 \sqrt{H_r b} M_P \operatorname{sech}^2(3bt/2)\right) = 0$$

Analytically solvable! (Landau, Lifshitz, v.3)

The Bogolyubov coefficient:

The Bogolyubov coefficient:
$$|B|^2 = \cos^2\left(\frac{\pi}{2}\sqrt{1+\frac{64}{9}\beta H_0\sqrt{H_r\,b}\,M_P}\right)\frac{1}{\sinh^2\left(\frac{3\pi kb}{2a}\right)}$$

$$q = k\frac{a_0}{a_r}$$

Gravitational wave spectrum

Main features:

- flat spectrum with the exponential UV cutoff
- significant effect for low cutoff scale ~ 10¹⁵ GeV
- no IR cutoff
- model independent inevitable contribution!

EFT cutoff

$$\Lambda = \beta^{-1/3}$$

Conclusions

- High frequency gravitational waves can be sensitive to the quantum gravity effects
- Perturbative decay of inflation to gravitons can be non-negligible for low reheating temperatures → high frequency GWs
- Graviton bremsstrahlung during reheating can provide a sizable HF GW signal → constraints on EFT
- Reheating-dependent constraints on quantum gravity scale from gravitational waves!
- The effect of non-adiabatic dropping down of Hubble scale can cause generation of stochastic graviational waves in a wide range of the spectrum from low to high frequences
- The effect can be significantly enhanced if the EFT cutoff is lower than Planck scale!
- Stochastic GWs can probe preheating stage and higher derivative EFT operators

