

Next Generation Ground-Based Gravitational Wave Detectors

on behalf of Cosmic Explorer Project

XIX International Conference on Topics in Astroparticle and Underground Physics CE-G2500061

Outline

- Next generation gravitational wave detectors
- Astrophysics and multi-messenger astronomy
- Cosmic Explorer
- Einstein Telescope
- Summary

Next Generation Ground based Gravitational Wave Detector

• 10x better performance across the whole frequency band (with respect to aLIGO A+)

Cosmic Explorer (CE)

- 20 km and 40 km L-shaped surface observatories
- scaled up LIGO technology & enhancements
- GW frequencies 10Hz–2kHz

Einstein Telescope (ET)

- 10 km underground triangle*
- 6 interferometers in "xylophone" configuration:
 - Cryogenic low frequency
 - High power high frequency
- GW frequencies 7Hz–2kHz

Next Gen Gravitational Wave Observations

Increased event rate

- 10⁵ BHBH sources per year
- 106 NSNS merger per year

Plan for new facilities

- Implement lessons learned
- Utilizing new techniques and technologies

Next generation observatories

- 10x better performance across the whole frequency band
- Cosmic Explorer (CE)
- Einstein Telescope (ET)

Cosmology and Precision Science

Able to see astrophysical gravitational wave events out to almost the edge of the observable Universe.

- Aim to see almost all BNS mergers
- \bullet To register most of 30+30M $_{\! s}$ black-hole mergers

Increased precision in waveform detection

- SNR ~300 for NS-NS events
- SNR ~3000 for BH-BH event
- Testing GR, ringdown measurements

Multi-Messenger Astronomy

• More neutron star mergers ...

Science with Next Generation Observatories

New Facilities

Next generation observatories

- New facilities
- New locations
- Incorporating lessons learned from current observatories

Next Generation Ground based Gravitational Wave Detector

Cosmic Explorer (CE)

- 20 km and 40 km L-shaped surface observatories
- scaled up LIGO technology & enhancements

Einstein Telescope (ET)

- 10 km underground triangle*
- 6 interferometers in "xylophone" configuration:
 - Cryogenic low frequency
 - High power high frequency

^{*} under reevaluation

Cosmic Explorer

- Next-generation US-led gravitational-wave observatory project
 - 40-km and 20-km L-shaped surface observatories
 - Estimated operating in 2030s
 - Synergies with other facilities (Einstein Telescope, 2G detectors, space-based detector LISA, EM telescopes, particle detectors, etc.) for enabling astronomy and astrophysics breakthroughs
- Envisioned as an NSF-funded Project
 - Horizon Study (2021) arXiv:2109.09882 (key science questions, design overview, community, organisation and planning, etc.)

Cosmic Explorer Design

Quantity	LIGO A+	LIGO A#	CE
Arm length	4 km	4 km	40 km / 20 km
Wavelength	1 um	1 um	1 um
Mirror mass	40 kg	100 kg	320 kg
Mirror Material	Fused Silica	Fused Silica	Fused Silica
Arm Power	0.8 MW	1.5 MW	1.5 MW
Squeezing	6 dB	10 dB	10 dB
Newtonian Noise Suppression	_	3x	10x

Evans et al., Cosmic Explorer Horizon Study, https://dcc.cosmicexplorer.org/CE-P2100003/public (2021)

320 kg end

test mass

Design motivations

Optimize science output while minimizing risk and complexity

Arm length

- 40 km detector with deep broadband sensitivity, from Hz kHz (limited by free spectral range of 3.7 kHz)
- 20 km detector trades off sub-kHz sensitivity for better high-frequency (1-3 kHz) performance, neutron star post-mergers
 - This required tuning of operating point
- L-shape to reduce vacuum system cost (already 40% of cost); Long arms advantageous where surface feasible (North America, Australia)

Number of detectors

 Two widely separated CEs advantageous for source localization, polarization

CE - Test Mass Suspension

- Quadruple pendulums
- Filter vibrations above 5 Hz
- Test mass 320 kg, 70 cm diameter
- Improved suspension and isolation
 - Additional blades in 'monolithic stage'
 - Longer pendulums
- Lower noise sensors
 - Displacement sensors
 - Accelerometers

13

Newtonian Noise

Newtonian noise is classical Newtonian force acting on the Test Masses.

- Driven by local density changes
 - From seismic activity
 - From atmospheric disturbance

CE - Newtonian Noise

- Required mitigation of upto 10x suppression
 - Predominantly surface wave
 - Research underway to develop techniques
- Infrastructure features
 - Low density around/underneath test mass
 - Meta-material/refraction near stations.

Einstein Telescope

Next-generation European-based gravitational-wave observatory

- Planned to be operation in the 2030s
- 10-km triangle underground observatory*
- Sense both polarisations; sensitive to low frequencies down to a few Hz

- Solid room temperature high-frequency
- Dashed cryogenic low-frequency

^{*} Nominal design, under revision

Einstein Telescope Nominal Design

- Equilateral triangle
- Arm length 10km
- 200-300 m underground
 - Mitigate Newtonian Noise
- 3 'detectors'
 - Each detector consist of a low- and high-free interferometer.

Quantity	ET-HF	ET-LF	
Arm length	10 km	10 km	
Wavelength	1 um	1.55 um 211 kg	
Mirror mass	200 kg		
Mirror Material	Fused Silica	Silicon 18 kW 10-20 K	
Arm Power	3 MW		
Operating Temp	290 K		
Squeezing	10 dB	10 dB	
Newtonian Noise Suppression	_	3x	

TAUP 2025 - CE-G2500061-v1

Optical element, Fused Silica, room temperature

Optical element,
Silicon,
cryogenic

Laser beam 1550nm Laser beam 1064nm squeezed light beam

atmospheric GGN + long baseline

Slide: Stefan Hild 21 TAUP 2025 - CE-G2500061-v1

Slide Courtesy Einstein Telescope, Archisman Ghosh

Two formal candidate sites:

- North of Sardinia (Sos Enattos, Lula area, Barbagia)
- EMR EURegio (border between Belgium, the Netherlands, and Germany)

Proposed third potential site:

Lausitz, Saxony, Germany

Site evaluation is a complex task dependent on:

- Geophysics and environment
- Finances and organization
- Services, infrastructures

Slide Courtesy Einstein Telescope, Archisman Ghosh

Geometry

Science with the Einstein Telescope: a comparison of different designs

Marica Branchesi,^{1,2,*} Michele Maggiore,^{3,4,*} David Alonso,⁵ Charles Badger,⁶ Biswajit Banerjee,^{1,2} Freija Beirnaert,⁷ Enis Belgacem,^{3,4} Swetha Bhagwat,^{8,9} Guillaume Boileau,^{10,11}

CPP # Conference Room F1-R3

COSMIC
EXPLORER

17:20 - 17:40

14:00		Wed	27/08 GW-5-CPP		CPP #: Conference Room FI-R3 C	PLORER
14.00	Constraints on Lorentz and parity violations with g		21700 G			
	Wave Effects of Gravitational Waves	14:00	Gravitational wave emission from merging strange quark	star - strar	nge planet.	
	Conference Room F1-R3		Conference Room F1-R3	0.0.0	14:00 - 14:20	
			Multiband Gravitational Wave and Multimessenger Astron	nomy with (Galactic compact binaries Yan Wang	
	Gravitational Wave Birefringence in Fuzzy Dark Ma Conference Room F1-R3		Conference Room F1-R3		28/08 GW-7-CPP	
15:00	A treatment to gravitational perturbations and Lor		Long-term multi-messenger signal simulation of a superior Conference Room F1-R3			
	Conference Room F1-R3	15:00	Gravitational Waves with Complex Features as Precision	14:00	The staus of KAGRA Large-scale Cryogenic Gravitational Wave Telescop	of. Shinji MIYOKI
			Conference Room F1-R3		Conference Room F1-R3	14:00 - 14:20
	GW-4-CPP		Detecting Gravitational Waves from Exoplanets Orbiting		Use of phase sensitive amplifier for the back-action evasion scheme	Kentaro Somiya
			Conference Room F1-R3		Conference Room F1-R3	14:20 - 14:40
16:00	Implications of Coomplemies Constitutions World				Quantum entanglement for gravitational-wave detectors	Mr Yohei Nishino
10.00	Implications of Cosmological Gravitational Wave S		GW-6-CPP		Conference Room F1-R3	14:40 - 15:00
	Conference Room F1-R3	16:00		15:00	Space-based optical lattice clocks as gravitational wave detectors	Bo Wang
	Probing Dark Matter with Space and Ground-base		Conference Room F1-R3		Conference Room F1-R3	15:00 - 15:20
	Conference Room F1-R3		Search for an isotropic Gravitational Wave Background v Alba Romero-Rodríguez		Fundamental Quantum Limits for Detecting Ultra-high Frequency Gravitational Waves	Xinyao Guo
	Bayesian model selection of Primordial Black Hole	lole			Conference Room F1-R3	15:20 - 15:40
	Dr Xin-yi Lin		Enhancing Taiji's Estimation on Galactic Binaries and Inst			
17:00					GW-8-CPP	
		17:00	Dawning of a new era in gravitational wave data analysis 赵 天宇	16:00	New dark matter production mechanism and the gravitational wave signals	Fa Peng Huang
			Accelerating Stochastic Gravitational Wave Backgrounds Bo Liang		Conference Room F1-R3	16:00 - 16:20
					Gravitational wave spectrum from metastable cosmic string network and the delayed scaling scenario	Kohei Kamada
					Conference Room F1-R3	16:20 - 16:40
			Impact of Massive Black Hole Binaries Source Confusion Qing Diao		The Equilibrium Spectrum of Stochastic Gravitational Wave Background and Its Role in Cosmic Evolution	n Manjia Liang
		18:00			Conference Room F1-R3	16:40 - 17:00
				17:00	Detecting Gravitational Waves from Cosmic Phase Transitions in Space	Qingyuan Liang
					Conference Room F1-R3	17:00 - 17:20
TAUP	2025 - CE-G2500061-v1				Compact Four degree-of-freedom Seismometer with Capacitive Readout	Yulin Xia

Conference Room F1-R3

Summary

- Next generation detector with an increase in sensitivity of 10x
- Astrophysics delight
 - Ability to see most NS-NS merger events
 - High SNR detections
 - Ability to test GR, merger ringdown measurements
 - Cosmology with high volume of events
- Cosmic Explorer, US based, 40 km and 20 km facilities
- Einstein Telescope, EU based, underground facility

Operational quantum manipulated and optimised light source within the LIGO detectors (photo G. Mansell)

Thank you

Questions?

TAUP 2025 - CE-G2500061-v1