

Charged lepton flavor violation with light dark matter and muonium invisible decay

(Based on **2507.13875**)
In collarobation with Yi-Liao and Xiao-Dong Ma

Sahabub Jahedi

Institute of Quantum Matter South China Normal University

Date: 26th August, 2025

Three Flavors in Standard Model

Charged Lepton Flavor Violation

Experiments

Lepton invisible decays in the SM and beyond

Standard Model: Flavor conserving

$$\mathcal{B}(\mu \to e \bar{\nu}_e \nu_\mu) \sim 100\%$$

$$\mathcal{B}(\tau \to e \bar{\nu}_e \nu_\tau) = (17.82 \pm 0.04)\%$$

$$\mathcal{B}(\tau \to \mu \bar{\nu}_\mu \nu_\tau) = (17.39 \pm 0.04)\%$$
 PDG Average

<u>Upper bound:</u> <u>Flavor violating</u>

Aim:

Light Dark Matter phenomenology with in Dark Sector Effective Field Theory (DSEFT) framework.

Dark Sector Effective Field Theory (DSEFT)

Symmetry: SU(3)_c X U(1)_{em}

Scalar DM:

$$\mathcal{O}_{\ell\phi}^{S,ji} = (\overline{\ell_j}\ell_i)(\phi^{\dagger}\phi)$$

$$\mathcal{O}_{\ell\phi}^{V,ji} = (\overline{\ell_j} \gamma^{\mu} \ell_i) (\phi^{\dagger} i \overleftrightarrow{\partial_{\mu}} \phi), \textbf{(X)}$$

$$\mathcal{O}_{\ell\phi}^{P,ji} = (\overline{\ell_j}i\gamma_5\ell_i)(\phi^{\dagger}\phi),$$
 $O_{\ell\phi}^{A,ji} = (\overline{\ell_j}\gamma^{\mu}\gamma_5\ell_i)(\phi^{\dagger}i\overleftrightarrow{\partial_{\mu}}\phi),$ (X)

Fermion DM:

$$\mathcal{O}_{\ell\chi 1}^{S,ji} = (\overline{\ell_j}\ell_i)(\overline{\chi}\chi),$$

$$\mathcal{O}_{\ell\chi 1}^{P,ji} = (\overline{\ell_j}i\gamma_5\ell_i)(\overline{\chi}\chi),$$

$$\mathcal{O}_{\ell\chi2}^{V,ji} = (\overline{\ell_j}\gamma^{\mu}\ell_i)(\overline{\chi}\gamma_{\mu}\gamma_5\chi),$$

$$\mathcal{O}_{\ell\chi 1}^{A,ji} = (\overline{\ell_j}\gamma^\mu\gamma_5\ell_i)(\overline{\chi}\gamma_\mu\chi),$$
 (X)

$$\mathcal{O}_{\ell\chi 1}^{T,ji} = (\overline{\ell_j} \sigma^{\mu\nu} \ell_i)(\overline{\chi} \sigma_{\mu\nu} \chi), \text{(X)}$$

$$\mathcal{O}_{\ell\chi2}^{S,ji} = (\overline{\ell_j}\ell_i)(\overline{\chi}i\gamma_5\chi)$$

$$\mathcal{O}_{\ell\chi2}^{P,ji} = (\overline{\ell_j}\gamma_5\ell_i)(\overline{\chi}\gamma_5\chi),$$

$$\mathcal{O}_{\ell\chi 1}^{V,ji}=(\overline{\ell_j}\gamma^\mu\ell_i)(\overline{\chi}\gamma_\mu\chi),$$
 (X)

$$\mathcal{O}_{\ell\chi2}^{A,ji} = (\overline{\ell_j}\gamma^{\mu}\gamma_5\ell_i)(\overline{\chi}\gamma_{\mu}\gamma_5\chi),$$

$$\mathcal{O}_{\ell\chi2}^{T,ji} = (\overline{\ell_j}\sigma^{\mu\nu}\ell_i)(\overline{\chi}\sigma_{\mu\nu}\gamma_5\chi), \, (\mathbf{X})$$

(X) means these operators vanish for real (Majorana) scalar and vector (fermion) DM

$$\overrightarrow{AD_{\mu}B} \equiv A(D_{\mu}B) - (D_{\mu}A)B$$

Dark Sector Effective Field Theory (DSEFT)

Vector DM-Case A:

$$\mathcal{O}_{\ell X}^{S,ji} = (\overline{\ell_{j}}\ell_{i})(X_{\mu}^{\dagger}X^{\mu}), \qquad \mathcal{O}_{\ell X1}^{P,ji} = \frac{i}{2}(\overline{\ell_{j}}\sigma^{\mu\nu}\ell_{i})(X_{\mu}^{\dagger}X_{\nu} - X_{\nu}^{\dagger}X_{\mu}), \\ \mathcal{O}_{\ell X1}^{T,ji} = \frac{i}{2}[\overline{\ell_{j}}\sigma^{\mu\nu}\ell_{i})(X_{\mu}^{\dagger}X_{\nu} - X_{\nu}^{\dagger}X_{\mu}), \\ \mathcal{O}_{\ell X1}^{V,ji} = \frac{1}{2}[\overline{\ell_{j}}\gamma_{(\mu}i\overrightarrow{D_{\nu})}\ell_{i}](X^{\mu\dagger}X^{\nu} + X^{\nu\dagger}X^{\mu}), \qquad \mathcal{O}_{\ell X2}^{A,ji} = \frac{1}{2}[\overline{\ell_{j}}\gamma_{(\mu}\gamma_{5}i\overrightarrow{D_{\nu})}\ell](X^{\mu\dagger}X^{\nu} + X^{\nu\dagger}X^{\mu}), \\ \mathcal{O}_{\ell X2}^{V,ji} = (\overline{\ell_{j}}\gamma_{\mu}\ell_{i})\partial_{\nu}(X^{\mu\dagger}X^{\nu} + X^{\nu\dagger}X^{\mu}), \qquad \mathcal{O}_{\ell X3}^{A,ji} = (\overline{\ell_{j}}\gamma_{\mu}\gamma_{5}\ell_{i})\partial_{\nu}(X^{\mu\dagger}X^{\nu} + X^{\nu\dagger}X^{\mu}), \\ \mathcal{O}_{\ell X3}^{V,ji} = (\overline{\ell_{j}}\gamma_{\mu}\ell_{i})(X_{\rho}^{\dagger}\overrightarrow{\partial_{\nu}}X_{\sigma})\epsilon^{\mu\nu\rho\sigma}, \qquad \mathcal{O}_{\ell X3}^{A,ji} = (\overline{\ell_{j}}\gamma_{\mu}\gamma_{5}\ell_{i})(X_{\rho}^{\dagger}\overrightarrow{\partial_{\nu}}X_{\sigma})\epsilon^{\mu\nu\rho\sigma}, \\ \mathcal{O}_{\ell X3}^{V,ji} = (\overline{\ell_{j}}\gamma_{\mu}\ell_{i})i\partial_{\nu}(X^{\mu\dagger}X^{\nu} - X^{\nu\dagger}X^{\mu}), \\ \mathcal{O}_{\ell X5}^{V,ji} = (\overline{\ell_{j}}\gamma_{\mu}\ell_{i})i\partial_{\nu}(X^{\mu\dagger}X^{\nu} - X^{\nu\dagger}X^{\mu}), \\ \mathcal{O}_{\ell X5}^{V,ji} = (\overline{\ell_{j}}\gamma_{\mu}\ell_{i})i\partial_{\nu}(X^{\mu\dagger}X^{\nu} - X^{\nu\dagger}X^{\mu}), \\ \mathcal{O}_{\ell X5}^{V,ji} = (\overline{\ell_{j}}\gamma_{\mu}\ell_{i})i\partial_{\nu}(X^{\mu\dagger}X^{\nu} - X^{\nu\dagger}X^{\mu}), \\ \mathcal{O}_{\ell X6}^{V,ji} = (\overline{\ell_{j}}\gamma_{\mu}\ell_{i})i\partial_{\nu}(X^{\mu}X^{\mu}), \\ \mathcal{O}_{$$

$$\mathcal{O}_{\ell X5}^{V,ji} = (\ell_{j}\gamma_{\mu}\ell_{i})i\partial_{\nu}(X^{+}X^{-}-X^{+}X^{+}), \text{(X)} \qquad \mathcal{O}_{\ell X5}^{V,ji} = (\ell_{j}\gamma_{\mu}\gamma_{5}\ell_{i})i\partial_{\nu}(X^{+}X^{-}-X^{-}X^{-}), \text{(X)} \qquad \mathcal{O}_{\ell X6}^{V,ji} = (\overline{\ell_{j}}\gamma_{\mu}\ell_{i})i\partial_{\nu}(X_{\rho}^{\dagger}X_{\sigma})\epsilon^{\mu\nu\rho\sigma}, \text{(X)} \qquad \mathcal{O}_{\ell X6}^{A,ji} = (\overline{\ell_{j}}\gamma_{\mu}\gamma_{5}\ell_{i})i\partial_{\nu}(X_{\rho}^{\dagger}X_{\sigma})\epsilon^{\mu\nu\rho\sigma}, \text{(X)} \qquad \mathbf{Vector DM-Case B:} \qquad \qquad \tilde{\mathcal{O}}_{\ell X1}^{S,ji} = (\overline{\ell_{j}}\ell_{i})X_{\mu\nu}^{\dagger}X^{\mu\nu}, \qquad \qquad \tilde{\mathcal{O}}_{\ell X1}^{P,ji} = (\overline{\ell_{j}}i\gamma_{5}\ell_{i})X_{\mu\nu}^{\dagger}X^{\mu\nu}, \qquad \qquad \tilde{\mathcal{O}}_{\ell X1}^{P,ji} = (\overline{\ell_{j}}i\gamma_{5}\ell_{i})X_{\mu\nu}^{\dagger}\tilde{X}^{\mu\nu}, \qquad \qquad \tilde{\mathcal{O}}_{\ell X2}^{P,ji} = (\overline{\ell_{j}}i\gamma_{5}\ell_{i})X_{\mu\nu}^{\dagger}\tilde{X}^{\mu\nu}, \qquad \qquad \tilde{\mathcal{O}}_{\ell X2}^{P,ji} = (\overline{\ell_{j}}i\gamma_{5}\ell_{i})X_{\mu\nu}^{\dagger}\tilde{X}^{\mu\nu}, \qquad \qquad \tilde{\mathcal{O}}_{\ell X2}^{P,ji} = \frac{1}{2}(\overline{\ell_{j}}\sigma^{\mu\nu}\gamma_{5}\ell_{i})(X_{\mu\rho}^{\dagger}X_{\nu}^{\rho} - X_{\nu\rho}^{\dagger}X_{\mu}^{\rho}), \text{(X)} \qquad \tilde{\mathcal{O}}_{\ell X2}^{T,ji} = \frac{1}{2}(\overline{\ell_{j}}\sigma^{\mu\nu}\gamma_{5}\ell_{i})(X_{\mu\rho}^{\dagger}X_{\nu}^{\rho} - X_{\nu\rho}^{\dagger}X_{\mu}^{\rho}), \text{(X)} \qquad X_{\nu\nu} = \partial_{\nu}X_{\nu\nu} - \partial_{\nu}X_{\nu\nu}$$

$$X_{\mu\nu} = \partial_{\mu}X_{\nu} - \partial_{\nu}X_{\mu}$$

q² distributions

Process:
$$\ell_i(p) \rightarrow \ell_j(k) + \mathrm{DM}(k_1) + \mathrm{DM}(k_2)$$

$$q^2 = (p-k)^2 = (k_1 + k_2)^2 =$$
 Invariant squared mass of the invisible particles.

Normalized differential decay rate:

$$\frac{d\tilde{\Gamma}}{dq^2} = \frac{1}{\Gamma^{\text{tot}}} \left(\frac{d\Gamma}{dq^2} \right)$$

Distinction between $\mathcal{O}_{\ell\chi 1}^{S,ji} \ \& \ \mathcal{O}_{\ell\chi 1}^{P,ji}$

Maximal distinction at $m_{
m DM}=m_{max}/2$ $m_{
m max}=(m_i-m_j)/2$

 $au o \mu \chi \chi$ provides maximal distinction

q² distributions

q² distributions

Constrains

Process: $\mu \rightarrow e + \mathrm{DM} + \mathrm{DM}$

Constrains

Process: $\tau \rightarrow e + \mathrm{DM} + \mathrm{DM}$

10/14

Constrains

Process: $\tau \rightarrow \mu + \mathrm{DM} + \mathrm{DM}$

Muonium invisible decay

SM Prediction:

$$\mathcal{B}(M_{\mu}^{O} \to \nu_{e}\bar{\nu}_{\mu}) \equiv \frac{\Gamma(M_{\mu}^{O} \to \nu_{e}\bar{\nu}_{\mu})}{\Gamma(\mu^{+} \to e^{+}\nu_{e}\bar{\nu}_{\nu})}$$
$$\simeq 6.6 \times 10^{-12}$$

MuLan collaboration estimation:

$$\mathcal{B}(M_{\mu}^{O} \to \text{inv.}) < 5.7 \times 10^{-6} \quad @ 90\% \text{ C.L.}$$
(Gninenko, Krasnikov, Matveev)

(Phys.Rev.D 87 (2013) 015016)

Ortho-muonium

(Spin triplet)

$$\langle 0|\bar{\mu}\gamma^{\alpha}e|M_{\mu}^{O}\rangle = if_{V}M_{M}\epsilon_{M}^{\alpha} \qquad \langle 0|\bar{\mu}\gamma_{5}e|M_{\mu}^{P}\rangle = -if_{P}N_{\mu}^{O}\langle 0|\bar{\mu}\sigma^{\alpha\beta}e|M_{\mu}^{O}\rangle = if_{T}(\epsilon_{M}^{\alpha}p^{\beta} - \epsilon_{M}^{\beta}p^{\alpha}) \qquad \langle 0|\bar{\mu}\gamma^{\alpha}\gamma_{5}e|M_{\mu}^{P}\rangle = if_{A}p^{\alpha}$$

Para-muonium

(Spin singlet)

$$\langle 0|\bar{\mu}\gamma_5 e|M_{\mu}^P\rangle = -if_P M_M,$$

$$0|\bar{\mu}\gamma^{\alpha}\gamma_5 e|M_{\mu}^P\rangle = if_A p^{\alpha}$$

Decay constants at equal.

Decay constants at non-relativisic limit are
$$f_P=f_V=f_T\equiv f_M=4\frac{|\phi(0)|^2}{M_M}$$
 equal.

$$|\phi(0)|^2 = \frac{(m_{\text{red}}\alpha)^3}{\pi}, \quad m_{\text{red}} = \frac{m_e m_\mu}{m_e + m_\mu}$$

Branching ratios

The mass range below the black solid line for each relevant operator is challenging to observe in future experiments.

Smoking gun signature as no SM prediction.

Summary

The DSEFT framework is an adequate way to explain cLFV by incorporating particle anti-particle pair.

The q² distributions of three body decays are pivotal to distinguish different DSEFT operators and Lorentz structure of the SM leptonic current.

- Due to the dimensionality, (pseudo)scalar operator for scalar DM possess the most stringent limits on the effective scale.
- Invisible decay from the para-muonium can be regarded as a smoking gun signature of new physics.

Thank you!

Wilson coefficients for vector DM case A

$$\frac{d\Gamma_{\ell_i \to \ell_j XX}^A}{ds} = \frac{\sqrt{\kappa_f \lambda(s, m_i^2, m_j^2)}}{3072\pi^3 m^4 m_i^3 s} \left\{ 3s(s^2 - 4m^2s + 12m^4)((m_i + m_j)^2 - s)|C_{\ell X}^{S, ji}|^2 \right\}$$

$$C_{\ell X}^{\mathtt{S,P}} \equiv rac{m_X^2}{\Lambda_{\mathrm{eff}}^3}$$
 $C_{\ell X1,2,4,5}^{\mathtt{V,A}} \equiv rac{m_X^2}{\Lambda_{\mathrm{eff}}^4}$ $C_{\ell X3,6}^{\mathtt{V,A}} \equiv rac{m_X^2}{\Lambda_{\mathrm{eff}}^3}$