PandaX: Particle and Astrophysical Xenon Experiments - 16 institutions, ~100 collaborators - CJPL: Deepest (2400 m rock, 6800 m.w.e); - PandaX-4T data-taking is ongoing now. PandaX-xT(20 ton) PandaX-II 580kg **PandaX start** 2010 - 2014 PandaX-I 120kg 2015 - 2019 **2020 - Current** PandaX-4T(3.7 ton) 2009.3 ~ 2027 # **Dual-Phase Xenon Time Projection Chamber** #### **Liquid Xenon Properities** - \square Large atomic number Z = 54; High mass number $\langle A \rangle$ = 131.3 - \square High density @ 177K, $\langle \rho \rangle = 2.86 \text{ g/cm}^3$ - No long-lived radioisotopes in WIMP ROI - ☐ Efficient UV scintillator (178 nm) #### **Liquid Xenon As DM Detection Medium** - \square Maximised interaction cross section for WIMP ($\propto A^2$) - ☐ High stopping power and self-shielding - ☐ Ultra-low intrinsic background - □ Scintillation and Ionization Combined: Discrimination of nuclear recoil and electron recoil; 3D position reconstruction - **□** Scalable further sensitivity improvement https://indico.bnl.gov/event/9858/ # **Nuclear Recoil V.S. Electron Recoil** - 1. The ratio: $(S2/S1)_{ER} >> (S2/S1)_{NR}$ (NR has lower ionization rate but higher charge density); - 2. Most of the backgrounds are ER events. exploring the ER region also holds promise for discovering new physics. - 3. ER and NR response are calibrated separately: ²²⁰Rn (ER), DD + AmBe (NR); # **Rich Physics with Electron Recoil Data** # Data-taking of PandaX-4T - 1. PandaX-4T has finished two phyiscs runs: Run0 and Run1, a total exposure of 1.54 ton×year after removed low-quality data; - 2. Run0 results published @ 2021; Run0 + Run1 combined blind-analysis published @ 2025. # **Background Model for keV region** - 1. Energy Region of Interest: S1 > 2 Photoelectrons (PE), $E_{rec} < 30$ keV, and ER 99.5% acceptance; - 2. Background Composition: Tritium, ²¹⁴Pb, ⁸⁵Kr dominates the background level - Run0: 0.20 events/day/ton/keV Run1: 0.14 events/day/ton/keV ### **Tritium** # Radon | Rn level | μ Bq/k g | | |----------|---|--| | Run 0 | 7.07 ± 0.02(stat.) ± 0.23(sys.) | | | Run 1 | 8.67 ± 0.01 (stat.) ± 0.27 (sys.) | | - Depletion effect: decreased concentration of longer-lived daughter nuclide compared to the parent; - 2. Side band fit to determine exact contribution: from 200 keV to 1000 keV. # **Best-fit of keV Background Model** | | Run0 | | Run1 | | |-------------------|------------------|-------------------|------------------|-------------------| | Run | Expected | Fitted | Expected | Fitted | | Tritium | | 578.6 ± 32.5 | | 118.4 ± 31.1 | | ²¹⁴ Pb | 327.2 ± 18.8 | 328.0 ± 17.1 | 724.0 ± 61.5 | 700.3 ± 45.3 | | ²¹² Pb | 57.8 ± 14.7 | 57.3 ± 14.1 | 103.3 ± 26.9 | 96.5 ± 23.8 | | ⁸⁵ Kr | 94.2 ± 47.3 | 87.3 ± 31.2 | 308.1 ± 95.2 | 272.2 ± 58.9 | | Material | 49.4 ± 3.3 | 49.5 ± 3.1 | 111.7 ± 9.9 | 105.9 ± 7.8 | | ¹³⁶ Xe | 36.9 ± 2.5 | 36.9 ± 2.4 | 66.2 ± 5.9 | 62.3 ± 4.6 | | ¹²⁷ Xe | 6.1 ± 0.3 | 6.1 ± 0.3 | 0.0 ± 0.0 | 0.0 ± 0.0 | | ¹²⁴ Xe | 2.3 ± 0.6 | 2.3 ± 0.6 | 4.0 ± 1.1 | 3.9 ± 1.1 | | Solar ν | 43.0 ± 4.6 | 42.9 ± 4.5 | 76.8 ± 9.4 | 72.6 ± 8.1 | | Accidental | 7.6 ± 2.4 | 7.8 ± 2.1 | 7.1 ± 2.3 | 7.0 ± 1.9 | | Total | • • • | 1196.6 ± 32.6 | | 1439.2 ± 36.2 | | Observed | 13 | 197 | 14 | 131 | - A combined fit of Run0 and Run1 in 1D energy space; - Tritium is set to free in fit; - No excess found: consistent with background model (p-value = 0.16). # **Solar Axions** - Solar axion can have O(keV) energy deposition in liquid xenon; - Two detection channels for solar axion: axioelectric effect and inverse Primakoff effect; - 3. Indpendent fit of different couplings in energy space: g_{ae} , $g_{a\gamma\gamma}$. $$\frac{dR_{ABC}}{dE_r} = \frac{N_A}{A} \left(\frac{d\Phi_A}{dE_a} (E_r) + \frac{d\Phi_B}{dE_a} (E_r) + \frac{d\Phi_C}{dE_a} (E_r) \right) \times \sigma_{ae}(E_r).$$ $$\frac{dR}{dE_r} = \frac{N_A}{A} \times \frac{d\Phi_P}{dEa}(E_r) \times \sigma_{IP}(E_r)$$ Phys. Rev. Lett. a134, 041001 # **Light Dark Matters** - Light Dark matter searching: Mono-energetic signals scan. - Axionlike Particles (ALPs) and Dark Photons (DPs) - Fermionic Dark Matter v conversion - 2. Data fluctuation yields a 1.9 σ (local) excess @ 3-5 keV; Phys. Rev. Lett. 134, 041001 # **Rich Physics with Electron Recoil Data** **Light Dark Matter scattering off free electrons (heavy** mediator) in the Sun generates a new (more energetic) - **Dark Matter mass:** - 10keV-10MeV - **Energy deposition:** - 10 to ~103eV #### Target density of Xenon **Reference cross section** Solar Reflected DM Flux $$\frac{dR}{dE_{R}} = N_{T} \Phi_{halo} \cdot \frac{1}{E_{R}} \frac{\sigma_{e}}{8\mu_{\rm DM,e}^{2}} \int dq q \left| f_{nl} \left(q, p_{e}' \right) \right|^{2} \left| F_{\rm DM}(q) \right|^{2} \cdot \int_{E_{\rm min}} dE \frac{m_{\rm DM}}{2E} \frac{16\pi R_{\odot}^{2}}{4\pi (1 \text{ A.U.})^{2}} \cdot F_{A_{\rho}}(E)$$ - > Ionization Form Factor - ✓ Depends on momentum transfer q and final state electron momentum. - ✓ DarkART (used) same as CRBDM Dark Matter Form Factor ✓ FDM = 1 heavy mediator(contact interaction) √ FDM ~ 1/q2 light mediator #### From Haipeng An's team #### The details of the simulation - > temperature and electron density distributions are isotropic. - > divide the Sun into slices. - ➤ Gravitational effect considered in an effective R = 4R_sun - ➤ The experimental search results using the xenon detector yield the most stringent cross-section for mass ranging from 0.02 to 10 MeV/c² - Combined with DAMIC-M new result, almost all the parameter space below 200 MeV for Freeze-out model was ruled out. # Thanks for attentions # Backup # **Updates in Data Reconstruction** # **Building the Background Model** # 1. Material Screening and Geant4-based Simulation - HPGe, ICP-MS, etc - BambooMC # 2. Fiducial Volume and Quality Selection - r dependent material background - S1/S2 pulse shape and hit pattern #### 3. Side band analysis: - high energy alphas in decay chain - spectrum fitting in high energy: uncertainty reduction # **Krypton** | | $\begin{array}{c} \beta - \gamma \\ \text{events} \end{array}$ | accidental
events | Kr/Xe
[ppt (10 ⁻¹²)] | |------|--|----------------------|-------------------------------------| | Run0 | 4 | 0.14 ± 0.04 | 0.5 ± 0.3 | | Run1 | 12 | 0.25 ± 0.05 | 0.9 ± 0.3 | - 1. isotopic abudance: 2×10^{11} - 2. $\beta \gamma$ coincidence events with a branching ratio of 0.473% - 3. Limited statistics lead to a large uncertainty - > Assume the temperature and electron density distributions are isotropic; - ➤ The first experimental search results using the xenon detector yield the most stringent cross-section for mass ranging from 0.02 to 10 MeV/c², (23 fold improvement compared with earlier studies) arXiv:2412.19970 # **Neutrinoless Double Beta Decay of Xe-136** • 136 Xe 0 uetaeta event rate is fitted to be $14\pm55~t^{-1}yr^{-1}$, the upper limit of $111~t^{-1}yr^{-1}$ at 90% C.L. is derived $$T_{1/2}^{0\nu\beta\beta} > 2.1 \times 10^{24} \text{ yr at 90% C.L.}$$ • Improvement to our previous PandaX-II results by an order of magnitude and to the XENON1T results by a factor of 1.8 #### Measurement of 2ບDEC Half-life of Xe-124 - Time-dependent background modeling; - Consistency with existing theoretical and experimental results; - Future analysis of other decay channels and 0υ modes. # **Cosmic-Ray Boosted Dark Matter** - Cosmic-Ray electron Boosted DM have the same interaction mechanism with DM- electron detection in the detector; - Self-developed MC simulation for the calculation of the DM Earth attenuation; - push the current mass range down by two orders of magnitude, achieve the minimum fermionic DM mass allowed by the Pauli principle; Phys. Rev. Lett. 133, 101805