

PandaX: Particle and Astrophysical Xenon Experiments

- 16 institutions, ~100 collaborators
- CJPL: Deepest (2400 m rock, 6800 m.w.e);
- PandaX-4T data-taking is ongoing now.

PandaX-xT(20 ton)

PandaX-II 580kg

PandaX start

2010 - 2014

PandaX-I 120kg

2015 - 2019

2020 - Current

PandaX-4T(3.7 ton)

2009.3

~ 2027

Dual-Phase Xenon Time Projection Chamber

Liquid Xenon Properities

- \square Large atomic number Z = 54; High mass number $\langle A \rangle$ = 131.3
- \square High density @ 177K, $\langle \rho \rangle = 2.86 \text{ g/cm}^3$
- No long-lived radioisotopes in WIMP ROI
- ☐ Efficient UV scintillator (178 nm)

Liquid Xenon As DM Detection Medium

- \square Maximised interaction cross section for WIMP ($\propto A^2$)
- ☐ High stopping power and self-shielding
- ☐ Ultra-low intrinsic background
- □ Scintillation and Ionization Combined: Discrimination of nuclear recoil and electron recoil; 3D position reconstruction
- **□** Scalable further sensitivity improvement

https://indico.bnl.gov/event/9858/

Nuclear Recoil V.S. Electron Recoil

- 1. The ratio: $(S2/S1)_{ER} >> (S2/S1)_{NR}$ (NR has lower ionization rate but higher charge density);
- 2. Most of the backgrounds are ER events. exploring the ER region also holds promise for discovering new physics.
- 3. ER and NR response are calibrated separately: ²²⁰Rn (ER), DD + AmBe (NR);

Rich Physics with Electron Recoil Data

Data-taking of PandaX-4T

- 1. PandaX-4T has finished two phyiscs runs: Run0 and Run1, a total exposure of 1.54 ton×year after removed low-quality data;
- 2. Run0 results published @ 2021; Run0 + Run1 combined blind-analysis published @ 2025.

Background Model for keV region

- 1. Energy Region of Interest: S1 > 2 Photoelectrons (PE), $E_{rec} < 30$ keV, and ER 99.5% acceptance;
- 2. Background Composition: Tritium, ²¹⁴Pb, ⁸⁵Kr dominates the background level
 - Run0: 0.20 events/day/ton/keV Run1: 0.14 events/day/ton/keV

Tritium

Radon

Rn level	μ Bq/k g	
Run 0	7.07 ± 0.02(stat.) ± 0.23(sys.)	
Run 1	8.67 ± 0.01 (stat.) ± 0.27 (sys.)	

- Depletion effect: decreased concentration of longer-lived daughter nuclide compared to the parent;
- 2. Side band fit to determine exact contribution: from 200 keV to 1000 keV.

Best-fit of keV Background Model

	Run0		Run1	
Run	Expected	Fitted	Expected	Fitted
Tritium		578.6 ± 32.5		118.4 ± 31.1
²¹⁴ Pb	327.2 ± 18.8	328.0 ± 17.1	724.0 ± 61.5	700.3 ± 45.3
²¹² Pb	57.8 ± 14.7	57.3 ± 14.1	103.3 ± 26.9	96.5 ± 23.8
⁸⁵ Kr	94.2 ± 47.3	87.3 ± 31.2	308.1 ± 95.2	272.2 ± 58.9
Material	49.4 ± 3.3	49.5 ± 3.1	111.7 ± 9.9	105.9 ± 7.8
¹³⁶ Xe	36.9 ± 2.5	36.9 ± 2.4	66.2 ± 5.9	62.3 ± 4.6
¹²⁷ Xe	6.1 ± 0.3	6.1 ± 0.3	0.0 ± 0.0	0.0 ± 0.0
¹²⁴ Xe	2.3 ± 0.6	2.3 ± 0.6	4.0 ± 1.1	3.9 ± 1.1
Solar ν	43.0 ± 4.6	42.9 ± 4.5	76.8 ± 9.4	72.6 ± 8.1
Accidental	7.6 ± 2.4	7.8 ± 2.1	7.1 ± 2.3	7.0 ± 1.9
Total	• • •	1196.6 ± 32.6		1439.2 ± 36.2
Observed	13	197	14	131

- A combined fit of Run0 and Run1 in 1D energy space;
- Tritium is set to free in fit;
- No excess found: consistent with background model (p-value = 0.16).

Solar Axions

- Solar axion can have O(keV) energy deposition in liquid xenon;
- Two detection channels for solar axion: axioelectric effect and inverse Primakoff effect;
- 3. Indpendent fit of different couplings in energy space: g_{ae} , $g_{a\gamma\gamma}$.

$$\frac{dR_{ABC}}{dE_r} = \frac{N_A}{A} \left(\frac{d\Phi_A}{dE_a} (E_r) + \frac{d\Phi_B}{dE_a} (E_r) + \frac{d\Phi_C}{dE_a} (E_r) \right) \times \sigma_{ae}(E_r).$$

$$\frac{dR}{dE_r} = \frac{N_A}{A} \times \frac{d\Phi_P}{dEa}(E_r) \times \sigma_{IP}(E_r)$$

Phys. Rev. Lett. a134, 041001

Light Dark Matters

- Light Dark matter searching: Mono-energetic signals scan.
 - Axionlike Particles (ALPs) and Dark Photons (DPs)
 - Fermionic Dark Matter v conversion
- 2. Data fluctuation yields a 1.9 σ (local) excess @ 3-5 keV;

Phys. Rev. Lett. 134, 041001

Rich Physics with Electron Recoil Data

Light Dark Matter scattering off free electrons (heavy mediator) in the Sun generates a new (more energetic)

- **Dark Matter mass:**
 - 10keV-10MeV
- **Energy deposition:**
 - 10 to ~103eV

Target density of Xenon

Reference cross section

Solar Reflected DM Flux

$$\frac{dR}{dE_{R}} = N_{T} \Phi_{halo} \cdot \frac{1}{E_{R}} \frac{\sigma_{e}}{8\mu_{\rm DM,e}^{2}} \int dq q \left| f_{nl} \left(q, p_{e}' \right) \right|^{2} \left| F_{\rm DM}(q) \right|^{2} \cdot \int_{E_{\rm min}} dE \frac{m_{\rm DM}}{2E} \frac{16\pi R_{\odot}^{2}}{4\pi (1 \text{ A.U.})^{2}} \cdot F_{A_{\rho}}(E)$$

- > Ionization Form Factor
 - ✓ Depends on momentum transfer q and final state electron momentum.
 - ✓ DarkART (used) same as CRBDM

Dark Matter Form Factor

✓ FDM = 1 heavy mediator(contact interaction)

√ FDM ~ 1/q2 light mediator

From Haipeng An's team

The details of the simulation

- > temperature and electron density distributions are isotropic.
- > divide the Sun into slices.
- ➤ Gravitational effect considered in an effective R = 4R_sun

- ➤ The experimental search results using the xenon detector yield the most stringent cross-section for mass ranging from 0.02 to 10 MeV/c²
- Combined with DAMIC-M new result, almost all the parameter space below 200 MeV for Freeze-out model was ruled out.

Thanks for attentions

Backup

Updates in Data Reconstruction

Building the Background Model

1. Material Screening and Geant4-based Simulation

- HPGe, ICP-MS, etc
- BambooMC

2. Fiducial Volume and Quality Selection

- r dependent material background
- S1/S2 pulse shape and hit pattern

3. Side band analysis:

- high energy alphas in decay chain
- spectrum fitting in high energy: uncertainty reduction

Krypton

	$\begin{array}{c} \beta - \gamma \\ \text{events} \end{array}$	accidental events	Kr/Xe [ppt (10 ⁻¹²)]
Run0	4	0.14 ± 0.04	0.5 ± 0.3
Run1	12	0.25 ± 0.05	0.9 ± 0.3

- 1. isotopic abudance: 2×10^{11}
- 2. $\beta \gamma$ coincidence events with a branching ratio of 0.473%
- 3. Limited statistics lead to a large uncertainty

- > Assume the temperature and electron density distributions are isotropic;
- ➤ The first experimental search results using the xenon detector yield the most stringent cross-section for mass ranging from 0.02 to 10 MeV/c², (23 fold improvement compared with earlier studies)

arXiv:2412.19970

Neutrinoless Double Beta Decay of Xe-136

• 136 Xe 0
uetaeta event rate is fitted to be $14\pm55~t^{-1}yr^{-1}$, the upper limit of $111~t^{-1}yr^{-1}$ at 90% C.L. is derived

$$T_{1/2}^{0\nu\beta\beta} > 2.1 \times 10^{24} \text{ yr at 90% C.L.}$$

• Improvement to our previous PandaX-II results by an order of magnitude and to the XENON1T results by a factor of 1.8

Measurement of 2ບDEC Half-life of Xe-124

- Time-dependent background modeling;
- Consistency with existing theoretical and experimental results;
- Future analysis of other decay channels and 0υ modes.

Cosmic-Ray Boosted Dark Matter

- Cosmic-Ray electron Boosted DM have the same interaction mechanism with DM- electron detection in the detector;
- Self-developed MC simulation for the calculation of the DM Earth attenuation;
- push the current mass range down by two orders of magnitude, achieve the minimum fermionic DM mass allowed by the Pauli principle;

Phys. Rev. Lett. 133, 101805