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AMS Launched May 2011
Space Shuttle Endeavour
Mission STS-134

i ied on the ISS
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AMS-02: A TeV precision magnetic spectrometer in space

Transition Ra.d.latlon etector Time Of Flight
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Intensity = Z2




AM§ Continious Data Flow ISS to POCC

TDRS Satellites
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To date 253
billion particles
have been
measured by
AMS: e*, e, p, P,
nuclei, y,...

Astronaut
with AMS Laptop

360 billion events
expected to 2030

[/ Sl SR RV o S
Payload Operations Control Centers (POCC) AMS Computers White Sands Ground Terminal,

at CERN, JSC, Asia L New Mexico
Alabama 4




AMS on ISS: 2026-2030+

With Completion of LO Upgrade AMS Acceptance will be Increased by 300% with Minimal Materials Above

— materials 0.005X,

e materials 0.055X,

zZ
X y

L1)




* Interstellar bl e
Medium __ - p, He, e-

~ from Collisions «

- €~ from Pulsars

WI|| be Vpres'ente'd by Shanglin i i S e 2 e 6



The positron flux is the sum of low-energy part from cosmic ray collisions
plus a high-energy part from pulsars or dark matter with a cutoff energy

2
Empirical model: . (E) = % [Cd(E/El)Yd + C4(E/E3) " exp(— E/Es)]

2/dof = 40/66
x / / Solar Collisions Pulsars or Dark Matter

25—y

* AMS positrons
4.5 million events
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Surprising Observation: The existence of a finite cutoff energy E;

E? T o Vs T
o+ (E) = = | Ca(E/E)" + C,(E/E,) "exp(~ E/E,)|

Collisions Pulsars or Dark Matter Collisions
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1/E; =0 or Eg = oo is excluded at 50



Latest Result on the electron spectrum

The spectrum fits well with two power Iaws (a, b) and _

Empmcal model: e—(E) = = (C EYa + CLE"? + Positron Source Term)
x?/dof = 25/67 Solar Power law a Power law b

250
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New sources, like Dark Matter or Pulsars, produce equal amounts of e+ and e—

By 2030, the charge-symmetric nature of the high energy source

will be established at the 40 level, due to increase of statistics and energy range
250

Projection 2030 T Positrons
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Properties of Cosmic Antiprotons
Above 60 GV, the antiproton-to-proton flux ratio is energy independent.

-3

0-3?<1 Q I LI | I 1 I 1 1 1 1 I I | 1 1 I I 1 1 1 I 1 1 | I I I-

- * AMS 1.3x10% Antiprotons

0.25}- -

[ —— Phys. Rev. D 99, 103026 (2019) .
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Cosmic Antiprotons and Positrons
Above 60 GeV, the p and e* fluxes have identical rigidity dependence
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behavior of positrons
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. || He AMS, with 250 billion events, :
10 3 | provides precise spectroscopy of cosmic ray nuclei 3
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Separation between H and He

Separation between Fe and Co
is better than 1 in 10° NUCIear Charge is better than 1 in 102



» Primary Cosmic Rays

Primary cosmic rays (p, He, C, O, Ne, Mg, S ..., Fe) are

mostly produced during the lifetime of stars and are

accelerated in supernovae shocks, whose explosion
rate is about 2-3 per century in our Galaxy.

S5 oLl
.- l.supernovae ‘:.

OProton
g
® Helium

/

e
7
-

¢ Carbon
F A
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will be presented by Qi Yan i,
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Latest AMS proton and He flux measurement
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Spectral Index vy

Proton/Heliu

_y=dlog®d/dlogR

m Flux Ratio

L} I .I
T 8 _ A —
- + Helium - B A+CX(R/45GV) _
2 1 F A=3.15+0.06 -
-2.4 _‘4 _ 6 = A=-0.291+0.01 —
[ 4 | ) o i
" } 1 F &8l 0000 e T
-2.6 |- A -1 4% & AT ——
: e 4 : : """"""""""""""" *(R/3. 5 GY)4 :
2.8 420 e i
810 20 30 102 2x10? 10° 2100 [ ]
Rigidity [GV] oliial PR . raal
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P and He may have same spectral index at highest rigidites

Physics Reports, 894, 1 (2021) :

Rigidity (R) [GV]

AMS found that proton flux have two components,
one is like Helium and another is unique to proton flux.
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P/He Ratio
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What about other Z=1 heavy cosmic rays? Let’s look on Deuterons.
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Precision measurement of isotopes
Isotopes: Same Z, different m
Ring Imaging CHerenkov (RICH)

Radiator g

(‘A__.__.-__..__._.__.__. T
: —_—— _&

RICH velocity v resolution
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Origin of Cosmic Deuterons D
He, C, O, ... + Interstellar Media =2 (D, 3He) + X
D and 3He are both known to be secondary cosmic rays

0.03
O | ?T* pro b
Eo.ozs - +++++++

£ ++
s { 3
= 0.02 He/p
™ UL ITTT TR +
W+ -
00151 Rigidity B [GV]

will be presented by V\ﬁeiwei Xu

10 15

The flux ratio of 3He/p
decreases
with rigidity above 4 GV.

If D is pure secondary,
the flux ratio of D/p
must also decrease

with rigidity above ~4 GV

The flux ratio of D/p
increases with rigidity and is
about to be constant above

13 GV.
D must have an additional

primary source i’



To find the D/p flux ratio rigidity dependence and to predict its value at high rigidities we note that

1 fl/)p/p = D/(He +* He) x He/(p + D) (1)

We then evaluate the D flux rigidity dependence as a weighted sum of primary and secondary fluxes D =
0.56 x3He+0.1 x*He, 3He/*He= 0.153 x (R/3.5GV)~%-?° and the He/(p+D)=3.15+3.18 x (R/3.5 GV)0-?

D/p _ 1+0.90(R/3.5GV)™ %% o 0.030 )
1+D/p  1+0.153(R/3.5GV)~92 = (1+1.01x (R/3.5GV)~0-»
From the equation, we got for the D/p flux ratio at high rigidities, D/p%=% = 0.031 + 0.001.

x1073

Rigidity [GV]

4 5 6 7 8 9.0 20
Rigidity R [GV]




Flux x R [ m2s7sr' (GV)"]

AMS Results: Primary cosmic rays have two classes

Light elements He-C-O and Ne-
each have their own rigidity dependence

30 > He/140 o Nex1.2
B O C/47 N

B A O/51 =
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Rigidity [GV] N
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Secondary Cosmic Rays
‘ S ESELTELsys LR e pasrees sesEaSecondary
' e / ‘A e g e o Li, Be, B, F, sub-Fe nuclei
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will be presented by Zhaomin Wang N



Secondary cosmic rays have two classes Li-Be-B and F
have their own rigidity dependence
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With more statistics we can study the differences between Li and B fluxes rigidity dependence at low
rigidities. One can expect that some part of L1 flux has a tertiary nature, 1.e. produced by the interaction
of B and Be with interstellar medium. To obtain the secondary and the tertiary components of the Li flux

we fit @y = @fi + (I{i to the weighted sum of a secondary cosmic ray flux, namely boron ®g, and of a
tertiary cosmic ray flux, namely ®g X (DB~+ above 6 GV. The fit yields @fi = (0.67 = 0.02) X ®g and

®7. = (0.52  0.08) X Dy X with a y2/d.o.f. = 28/53.
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Results on Lithium Isotopes

— |

C(R/RO)(S) R < RO
C, R >R,

e

q)7Li/cI)6Li={

t

Rigidity R [GV]
15

20

5

10

GALPROP Model
assuming a
primary component
in the “Li flux

AMS data and fit, R, = 7GV

USINE Model
assuming secondary
origin of Li and “Li

Above ~7 GV, the rigidity dependence of éLi and ’Li fluxes are identical

Excludes the existence of a sizable primary component in the “Li flux
will be presented by Hai Chen
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Three Kinds of Charged Cosmic Rays
Primary cosmic rays (p, He, C, O, Ne, Mg, S ,Ar, ..., Fe) are
mostly produced during the lifetime of stars and are
accelerated in supernovae shocks, whose explosion rate
is about 2-3 per century in our Galaxy.

S¥pernova

Proton
Secondary cosmic nuclei (Li, Be, B, F, ...)

are produced by the collisions of
primary cosmic rays and interstellar medium.

Cosmic nuclei with both Primary and Secondary
Components ( N, Na, Al, Cl,...) . Many primary
cosmic rays C, Ne, Mg, S are also expected to have
sizeable secondary component.

8 <) A

'.;:, Berl Lithium AMS found that all such fluxes can be presented as
| Boron erytium a weighted sums of the characteristic primary flux
Nitrogen ¢ (O, Si) and a charecteristic secondary flux (B, F)

will be presented by Cheng Zhang
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Summary Primary and Secondary Components

Nuclei Flux Primary Secondary Secondary Fr,% | Secondary Fr,%
6 GV 2TV
D¢ (0.835 +£0.025) x ®g | (0.70 £0.03) X Dy 20+1 4+0.5
Dy (0.091 £0.002) x ®g | (0.61 £0.02) x Dy 69+1 23+2
Dy (0.831 £0.025) x ®s; | (1.99 +£0.14) X D 24+1 5+0.5
Dy, (0.038 £ 0.003) x ®s; | (1.33 £0.04) X Dg ) E 38+12
Dy (1.008 £ 0.025) x ®s; | (2.39 +£0.17): X Dg 25+1 5+0.5
[OJN (0.105 £ 0.004) x ®g; | (1.04 £0.03) X O 57+2 2248
Dp (0.002*0:007) X @s; | (0:35'+0.02) x DE 98+2 9242
dg (0.162 + 0.005) x ®s; | (0.33 +£0.04) x Pf 18+3 3+1
(OTg) (0.008 + 0.001)-x®Ps; | (0.33 +0.01) x Pr 86+3 63+4
D, (0.021 £ 0:002) x ®g; | (0.49 +0.02) X O 74+4 4444
Dk (0.003'£0.001) x ®s; | (0.50 +0.02) X Og 96+3 87+3
D, (0.076 £ 0.003) x ®g; | [0.45 +0.03) X Dg 44+2 18+1

The C (Z=6) to Ca (Z=20) cosmic ray nuclei primary and secondary components derived as fractions of
O(Si) and B(F) fluxes, respectively, and their secondary fractions at 6 GV and 2 TV.
This allows to measure relative cosmic ray abundances of C/O, N/O, Ne/Si, Na/Si, Mg/Si, Al/Si, S/Si, CI/Si, Ar/5|
K/Si, and Ca/Si at the source independently of cosmic ray propagation.



Primary and Secondary Decomposition for All Cosmic

Ray Fluxes of 2s2<20, Z=26, Z=28
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Strange Quark Matter — “Strangelets™

E. Witten, Phys. Rev. D,272-285 (1984

There are six quarks —u, d, s, ¢, b, and t.

All the material on Earth is made out of u and d quarks

Diamond (Z/A ~ 0.5)

A Review Section of Physhcs Letturs

THE ALPHA MAGNETIC SPECTROMETER
(AMS) ON THE INTERNATIONAL
SPACE STATION:
PART II - RESULTS FROM THE FIRST SEVEN YEARS

M. AGUILAR et al.
(AMS Collaboration)

AVaRGEAD G109 &1 W, BcRNS0cAract. com

i .
ScienceDirect

Dttp:/Twww.clsevicr.comocate/physrep
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Strangelets with Z = 2 to 16 are ruled out by AMS

A  Limits from accelerators %

PAMELA 95% C.L. Upper Limit Z=2

Lunar Soil 95% CL Limit Z=6

Lunar Soil 95% CL Limit Z=8, 9 W&/ﬂf

AMS 95% C.L.
Upper Limits z-=¢

AMS 95% C.L. Upper Limit for Z=2

Strangelet ® [m?2y-'sr]
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Measurement of
near-Earth Radiation
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Measurement of near-Earth radiation

In the energy range 100 MeV to 4000 MeV over a large region, -35°< ©,,< +35°, only 3He isotope exists.

X
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AMS Helium nuclei flux 800
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[1.92-2.15] GV

Time Variation of Cosmic
nght Nuclel
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Hathaway/Upton

All nuclei exhibit similar long-term and short-term time dependences.

Fluxes are anti-correlated with solar activity, (a) being lower during epoch
of high solar activity and (b) higher during epoch of low solar activity. Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Nov
201 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2022
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K-parameter as function of

rigidity
(I)%'X'/(I)%Ie D <(I)?'X/q)iHe> gt
(P /Py

* Li, Be and B are significantly less modulated than

He up to 3.6 GV.

* C, N and O are significantly less modulated than He

up to 2.15 GV.

AMS observed that these differences in solar modulation are linearly correlated with the differences
in the spectral indices A of the cosmic nuclei fluxes. This shows, in a model-independent way, that

I(X/He
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solar modulation of galactic cosmic nuclei depends on their spectral shape.
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He/Pr Hysteresis

« Correlation between
He flux and He/Pr ratio

(moving average).

At low rigidity, an hysteresis
between proton and helium
fluxes is observed around the
2014 solar maximum.

«During 2025 solar maximum,
both fluxes are showing a lower
minimum compared to 2014.
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Long Term( > 1 Solar Cycle) Studies of Charge Sign Effect
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Long Term Studies (> 1 Solar Cycle) Daily Variations of Elementary Particles and light Nuclei
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AMS is the only magnetic spectrometer in space.
The results from AMS are unlocking the secrets of the cosmos.
AMS will continue to take data for the ISS lifetime.
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