From Electrons to Phonons: Experimental Frontiers of Low-mass Dark Matter Searches

Suerfu Burkhant QUP, KEK August 26, TAUP2025 @ Xichang

Light Dark Matter, What and Why?

Conventional WIMP is motivated to be 10 GeV ~ 10 TeV mass, which naturally accounts for today's DM relic density.

Large LXe TPCs are already touching the *neutrino fog*.

The community has been revisiting the theories and identified several scenarios in which *sub-GeV dark matter arises naturally/are allowed*

- light dark matter or low-mass dark matter

How is Light Dark Matter Different?

lighter individual mass => less total kinetic energy available for (nuclear) recoil

- say DM moves with $v \sim 10^{-3}$, $E_r \sim 10^{-6}$ E_k , GeV dark matter has O(keV) energy for recoil

kinematic mismatch makes it even worse for nuclear recoil (but not for electron recoil)

Fixed total density, lower individual mass gives *larger flux*.

For DM mass around ~MeV, the de Broglie wavelength becomes comparable to the **size of atoms**

For DM mass around ~keV, the de Broglie wavelength becomes comparable to *interatomic spacing*

Technologies of Light DM Detection

Technology

Ionization/Scintillation

light-element-based detector doping with light element Migdal effect

DM-electron scattering single photon excitation

Calorimetry

cryogenic bolometer superfluid helium

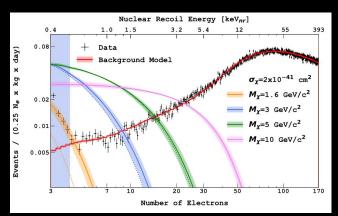
mKIDs SNSPD TES graphene FETs etc.

Interaction

Nuclear

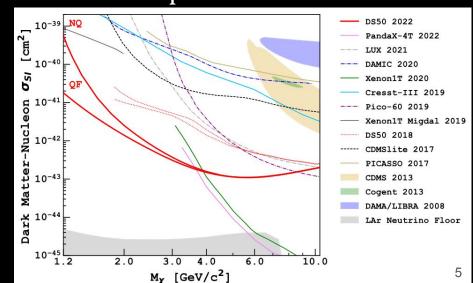
4

DarkSide-50


Argon produces *more energetic recoils* compared to Xe.

- lowest threshold achieved at **S2-only** (no PSD)

DarkSide-50: dual-phase LAr TPC with 46-kg active mass

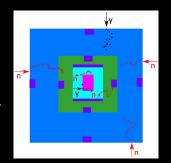

operated at LNGS, Italy

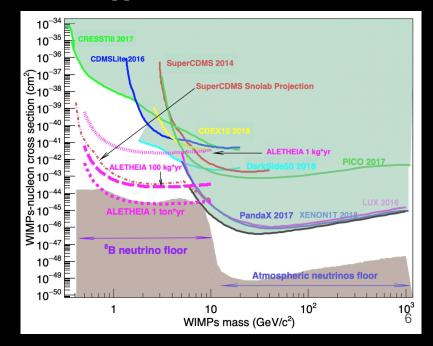
- 3" low-bg PMT readout
- 0.06 keVer, down to 1.2 GeV

PRD 107, 063001 (2023)

DS-20k expected to reach sub-GeV sensitivity + dedicated low mass experiment

ALETHEIA - Liquid He TPC


TPC has been shown to be very powerful in the search of WIMP

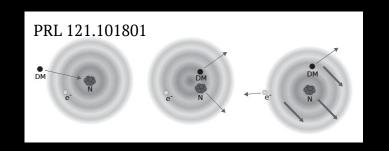

In extending the reach to lower mass, the most straightforward approach is to construct a TPC

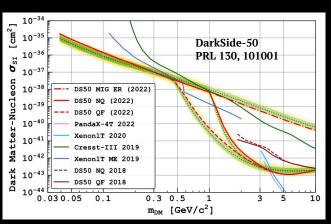
out of a light element - He.

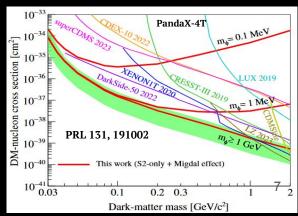
The ALETHEIA experiment:

- liquid helium TPC @ 4K
- aiming for 100 MeV ~ 10 GeV
- lower bkg, discrimination
 TPB + SiPM readout
- S1/S2 v.s. PSD
- large HV required

arXiv:2103.02161

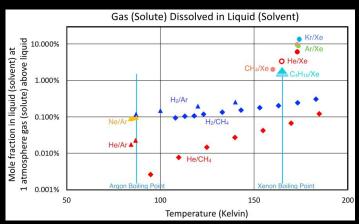


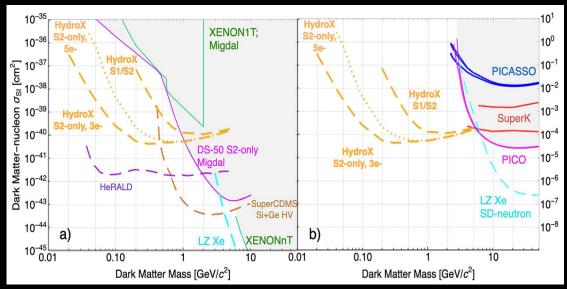

Migdal-Based S2-Only Analysis



Sudden acceleration of nucleus can "leave an electron behind" with a small but non-zero and calculable probability.

- First formulated by A. Migdal in 1940s
- "direct ionization" occurs when nuclear acceleration is fast compared to atomic orbital velocity
- Allows to create an **ionization signal with recoil energy** much below threshold
- Observed in nuclear decay process, currently searching in nuclear scattering experiments

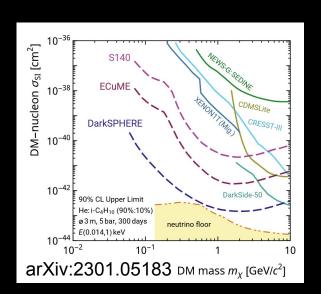

HydroX - Hydrogen-doped LXe TPC

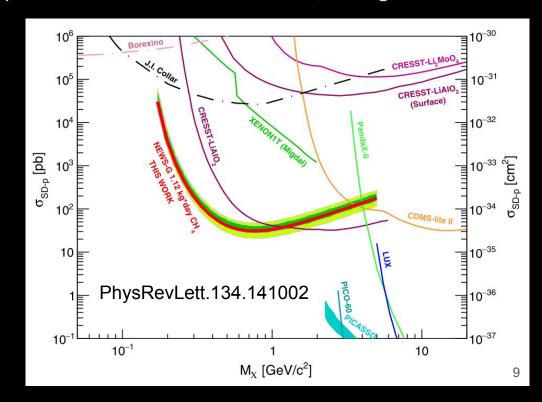

Due to the kinematic mismatch, Xe is not ideal for low-mass DM detection.

HydroX proposes to dope light element to LXe:

- no measurement of H2 in Xe
 but the solubility is likely high
- even with 1% loading,

Nature Communications Physics (2025)8:244


NEWS-G: a "hydrogen" proportional counter



1.3m diameter sphere made of high-purity OFHC + inner e-formed surface; ~100 g methane

Multianode sensor "ACHINOS"

Leading SD result from 200 MeV to 1 GeV

Technologies of Light DM Detection

Technology

Ionization/Scintillation

Calorimetry

Nuclea

light-element-based detector doping with light element Migdal effect

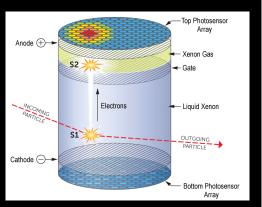
cryogenic bolometer superfluid helium

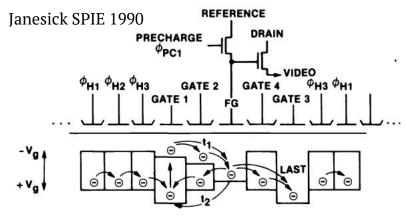
Interaction

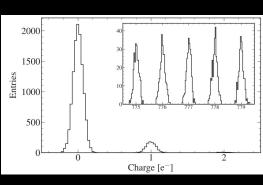
DM-electron scattering single photon excitation

mKIDs SNSPD TES graphene FETs etc.

Dark Matter Search with Single Ionization/Excitation



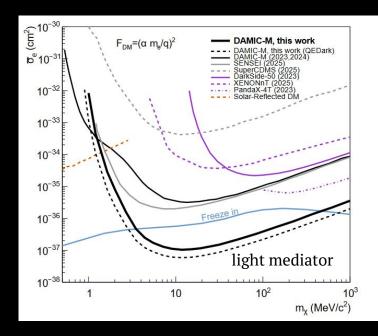

For even lower mass below 1 MeV, *ER* is more effective in creating single ionization events.

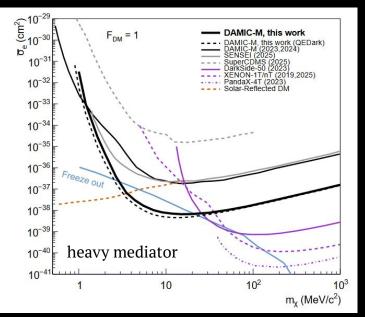

Large noble liquid TPC has a rather low efficiency/high background for measuring single photon, but due to electroluminescence *it is very effective in detecting single ionization*.

- competitive results from XENONnT, PandaX, LZ, DarkSide

Another competitive technique is the *Skipper CCD* (DAMIC, SENSEI) - *intrinsically e- counting device*

PRL 119, 131802


Dark Matter Search with Single Ionization/Excitation



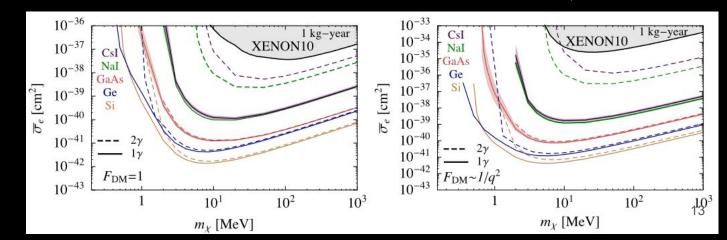
Another competitive technique is the Skipper CCD (DAMIC, SENSEI)

- Sub-electron noise achieved by repetitive readout
- Already sensitive to some light dark matter models!

arXiv:2503.14617v1

Dark Matter Search with Single Ionization/Excitation

How about single photons?


Single excitation by DM-electron scattering is plausible (PRD 85, 076007) but **technically very challenging**

- conventional single photon detectors have too much single photon noise
- novel cryogenic sensors are not available with large active areas
- afterglow not very understood at cryogenic temperatures

PRD 96, 016026

On the other hand:

- high-purity
- large exposure

Technologies of Light DM Detection

Technology

Ionization/Scintillation

ıcleaı

light-element-based detector doping with light element Migdal effect

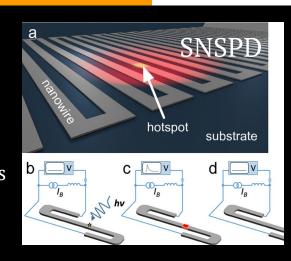
ectronic

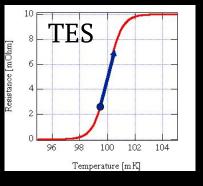
<u>Interaction</u>

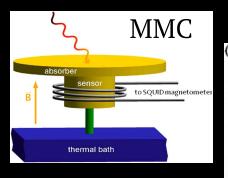
DM-electron scattering single photon excitation

Calorimetry

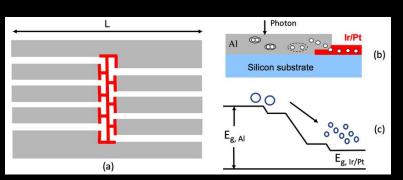
cryogenic bolometer superfluid helium

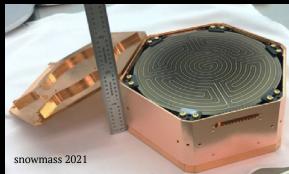

mKIDs SNSPD TES graphene FETs etc.

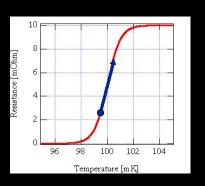


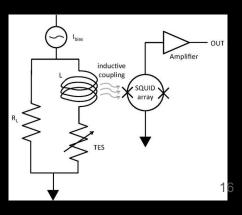

Cryogenic Calorimeter

- often requires *Kelvin to sub Kelvin temperature* to work
- often *very small* for improved sensitivity (O(1mm))
- **sensitive to heat** in one way or another
 - opens a new window in detector physics
- thermal/equilibrium or athermal/nonequilibrium
 - thermal detector: measures temperature-dependent properties higher resolution, no fano fluctuation
 - athermal detector: not (directly) dependent on temperature

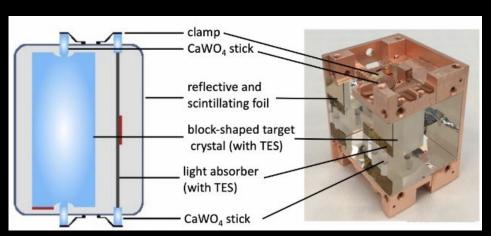





(Superconducting) Transition-Edge Sensors



- TES is one of the oldest cryogenic bolometric technology, made popularised by
 - SQUID (for low-impedance current measurement)
 - voltage-bias (current bias thermal runaway)
- TES measures *T-dependent resistivity* during superconducting transition
- Conventional TES has a very small active mass dark matter experiments need to increase the active mass
- SuperCDMS: quari-particle trap assisted transition edge sensor
 - naturally sensitive to sub-GeV DM via NR
 - capable of single e- measurement with HV device

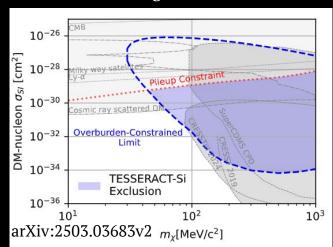


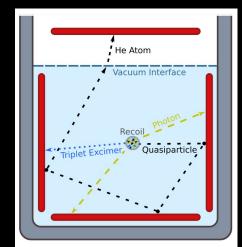
CRESST

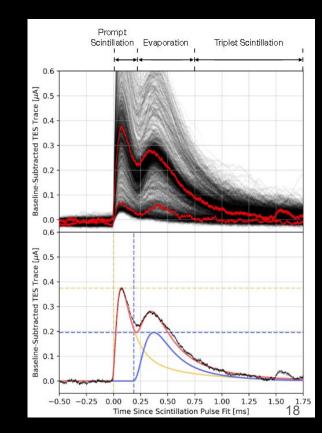
- CRESST experiment uses TES on Si directly on crystal for measuring phonons
- Light-heat dual readout for background rejection.
- Sub-GeV sensitivity demonstrated; after upgrade 50 MeV DM via NR
- No DM-electron scattering (at the moment)
- Flexibility in target selection (Al₂O₃, CaWO₄, LiAlO₂)

Easy to scale up

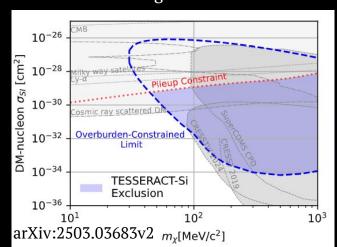
arXiv:2505.01183v1

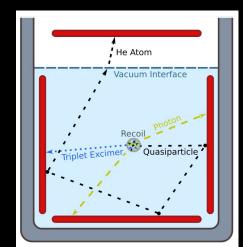


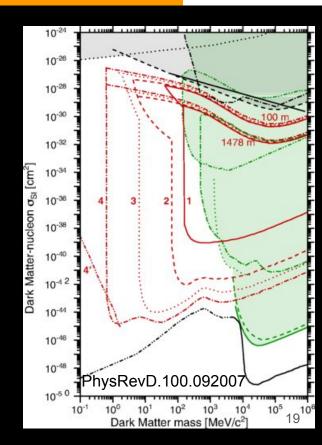



Liquid Helium with Calorimetric Readout

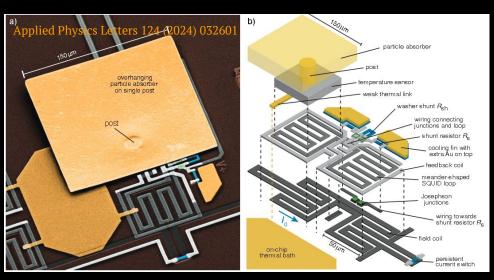
- TESSERACT project is a collection of experiments based on various targets and TES readout technology
- Recently TESSERACT demonstrated DM sensitivity on surface with gram-scale 1 cm2 detector
- HeRALD uses superfluid He as target and QET as readout
 - scintillation + quantum evaporation, discrimination/PSD
 - eventual goal to ~MeV DM near v floor

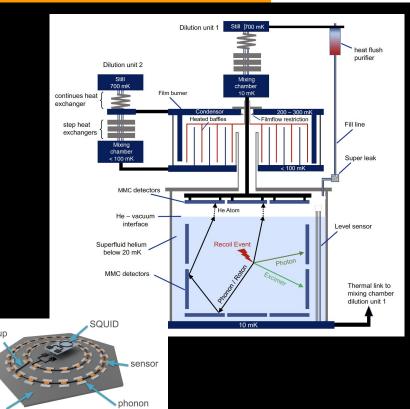





Liquid Helium with Calorimetric Readout

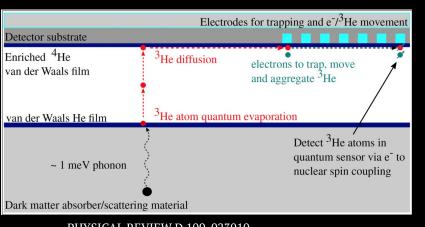
- TESSERACT project is a collection of experiments based on various targets and TES readout technology
- Recently TESSERACT demonstrated DM sensitivity on surface with gram-scale 1 cm2 detector
- HeRALD uses superfluid He as target and OET as readout
 - scintillation + quantum evaporation, discrimination/PSD
 - eventual goal to ~MeV DM near v floor

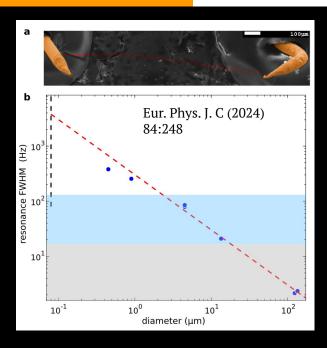

Liquid Helium with Calorimetric Readout


wafer absorber.

silicon or sapphire

- DELight experiment:
 - uses MMC instead of athermal TES
 - T-dependent magnetization + SQUID readout
 - sensor itself: ~1 eV resolution for 6-keV X-ray
 - detector expects 10~20 eV threshold w/ absorber


collector



Liquid Helium with Calorimetric Readout

- QUEST-DMC
 - superfluid He-3 for spin-dependent interaction
 - 100 uK operating temperature (DR + demagnetization)
 - nanomechanical measurement of quasiparticle
 - heat => quasiparticle => drag to a nanowire => change in resonance frequency

Another group of scientists suggests using electron-nuclear spin coupling to detect single He3 atoms on a CCD-like quantum sensor

Technologies of Light DM Detection

Technology

Ionization/Scintillation

Calorimetry

Nuclear

light-element-based detector doping with light element Migdal effect

cryogenic bolometer superfluid helium

ectronic N

<u>Interaction</u>

DM-electron scattering single photon excitation

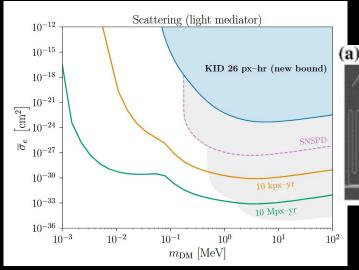
mKIDs SNSPD TES graphene FETs etc.

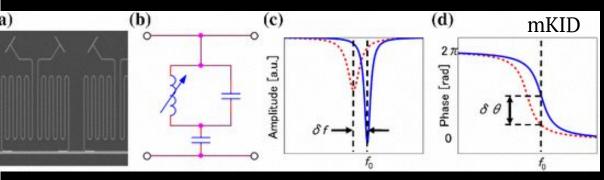
Detecting e⁻ Scattering with Cryogenic Sensors

Cryogenic detectors have a unique strength of being able to detect very small amounts of energy deposits as quasiparticles (meV gap energy).

This renders a few detector techniques to put world-leading limits on DM-e interaction in the lowest mass range

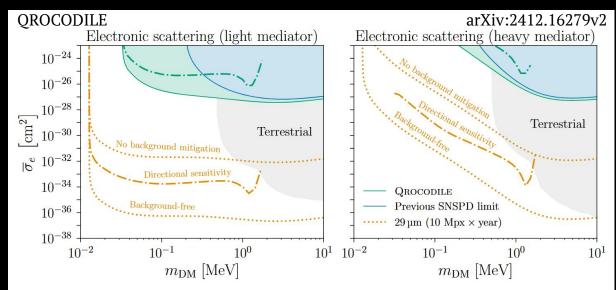
- with *prototype devices and on the surface*
- **mKIDs and SNSPDs** are the strong players in this game
- QET-based TES proposed
- more efforts going into making more sensitive detectors & multiplexing rather than lower bkg

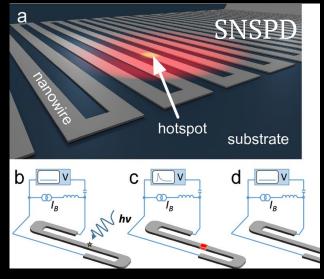



Detecting e⁻ Scattering with Cryogenic Sensors

mKIDs work in frequency domain by nature - very easy to multiplex (O(1000)) readily achievable)

- *IR sensitivity* demonstrated (0.2-eV threshold) (arXiv:2403.19739)
- relatively easy to fabricate, but complex signal processing
- also being used to search for DM-nuclear scattering and CEvNS (BULLKID)




Detecting e⁻ Scattering with Cryogenic Sensors

SNSPDs are *photon counting devices* working in "avalanche-mode"

- low-threshold of O(0.1 eV), high detection efficiency
- clean digital signal no spectroscopy
- simple operation & readout

Summary

Given the null results after decades of efforts, starting to focus on light dark matter.

New technical challenges due to lower interaction energies.

- for NR, conventional detector ~ O(100 MeV), then microcalorimeter seems to be the most popular choice.
- for ER, TPC (10MeV), CCD/semiconductor (1MeV), superconductor (sub-MeV)

New cryogenic detector evolving fast: in the next few years, they will be scaled up and moving underground for *real science runs*.

Challenge on the theory side: is there a consensus about "best material model"?

Relevant Talks

Search for Light Dark Matter with XENONnT

Sub-keV dark photon search with S2-only data in *PandaX4T*

Search for new physics in low energy electron recoil signals in LZ WS2022+2024 combined dataset

Towards the deployment of **DAMIC-M**: status and latest results

Searches for Light Dark Matter with DarkSide-20k and *DarkSide-LowMass*

ALETHEIA: Hunting for low-mass dark matter with liquid helium-filled TPCs

The **SuperCDMS** SNOLAB experiment

Search for light dark matter with CRESST-III

The Direct Search Experiment for Light Dark Matter (*DELight*): Overview and Perspectives

Search of light Dark Matter with **TESSERACT** experiment at LSM

The **PICO-40L** Dark Matter Search

BULLKID-DM: searching for light WIMP with monolithic arrays of detectors

Status of the **Ptolemy** project