Pulsar timing array and the implication

K. J. Lee
Department of Astronomy, Peking university
National astronomical observatory, CAS

<u>kjlee@pku.edu.cn</u>
@The XIX Int. Conf. TAUP, Xichang
2025

GW ladscape

Quick guide to the GW detection using pulsar timing array

Phenomenology model of pulsars

Frankly speaking, we do not know how pulsar radiates.

But the pulse time of arrivals are so accurate.

What does it means

100ns / 3 yr= 10^{-7} s / 10^{8} s $\sim 10^{-15}$

~Measure 1 proton radius over 1 meter and do it over several years

How to identify GW signal?

PTA=Multibeam-oneway interferometer

Angle between psr pairs

International PTAs

MPTA 2019—

But PTA is not only for GW

Other correlation

Pulsar to recover local clock

100ns 1yr= 3e-15 100ns 10yr=3e-16

Yunnan 40m, 1e-14 @ 3yr Unpublished

BAT MID (day)

IPTA, 5e-16 @ 20yr

Hobbs, Guo, Caballero, Coles, Lee, et al., 2020, MNRAS

Recover local clock jump at precision level of 80ns.

Li et al., 2019,scpma

PTA and Solar system dynamics

$$\Delta_{\rm R\odot} = -\frac{1}{c} \; \vec{r} \cdot \hat{s}$$

$$\Delta_{\mathrm{R}\odot} = -\frac{1}{c} \, \vec{r} \cdot \hat{s}$$

$$\frac{\mathrm{d}\Delta_{\mathrm{E}\odot}}{\mathrm{d}t} = \sum_{i} \frac{GM_{i}}{c^{2} r_{i}^{\mathrm{E}}} + \frac{v_{\mathrm{E}}^{2}}{2c^{2}} - \mathrm{constant}$$

$$\begin{split} \mathbf{a}_{A,pm-pm} &= \sum_{B \neq A} \frac{GM_B(\mathbf{r}_B - \mathbf{r}_A)}{r_{AB}^3} \bigg\{ 1 - \frac{2(\beta + \gamma)}{c^2} \sum_{C \neq A} \frac{GM_C}{r_{AC}} - \frac{2\beta - 1}{c^2} \sum_{C \neq B} \frac{GM_C}{r_{BC}} \\ &+ \gamma \bigg(\frac{v_A}{c} \bigg)^2 + (1 + \gamma) \bigg(\frac{v_B}{c} \bigg)^2 - \frac{2(1 + \gamma)}{c^2} \mathbf{v}_A \cdot \mathbf{v}_B \\ &- \frac{3}{2c^2} \bigg[\frac{(\mathbf{r}_A - \mathbf{r}_B) \cdot \mathbf{v}_B}{r_{AB}} \bigg]^2 + \frac{1}{2c^2} (\mathbf{r}_B - \mathbf{r}_A) \cdot \mathbf{a}_B \bigg\} \\ &+ \frac{1}{c^2} \sum_{B \neq A} \frac{GM_B}{r_{AB}^3} \bigg[\big[\mathbf{r}_A - \mathbf{r}_B \big] \cdot \big[(2 + 2\gamma) \mathbf{v}_A - (1 + 2\gamma) \mathbf{v}_B \big] \bigg] (\mathbf{v}_A - \mathbf{v}_B) \\ &+ \frac{(3 + 4\gamma)}{2c^2} \sum_{B \neq A} \frac{GM_B \mathbf{a}_B}{r_{AB}} \end{split}$$

1PN 1 star, 8 planets, 300+ astroid Observations: Radar ranging, fly-by, laser ranging, VLBI, optical astrometry

Any error in solar system ephemeris results in timing residual signals

UMO limits

Planet mass measurements

GWs

We have seen that stochastic background is detected by identification of Hellings-Downs correlation.

However,

PTA is not only for stochastic background, but also capable of detecting single sources, if one regard PTA as multi-path interferometer.

$$\frac{\Delta\omega}{\omega} \sim g(h(t, 0) - h(t - r, r))$$

"See" the SMBH

The size make big difference

$$h = \Delta p \Delta x$$

$$h = \Delta \theta p \Delta x$$

$$\Delta \theta = \frac{h}{p} \frac{1}{\Delta x} = \frac{\lambda}{\Delta x}$$

PTA can resolve and localize the single GW source

Polarization of GW and gravity test

Dispersion / graviton mass

$$\frac{\Delta\omega(t)}{\omega} = -\frac{\hat{\mathbf{n}}^i \hat{\mathbf{n}}^j}{2\left(1 + (c/\omega_g)\mathbf{k}_g \cdot \hat{\mathbf{n}}\right)} \left[h_{ij}(t,0) - h_{ij}(t - |\mathbf{D}|/c, \mathbf{D})\right]$$

GR case

Lee et al. 2010

Recap:

- PTA is array of pulsars
- PTA can
 - Provide long-term stable clock
 - Explore the solar system and searching for hidden objects
 - Detect stochastic GW background
 - Supermassive BH binaries
 - Early universe
 - Resolve single GW sources
 - SMBHBs (1e8-1e12 Msun)
 - Cosmic string loops
 - Test gravity theory via polarization and dispersion relation measurements

Where we were before 2023?

Good news, Theorists low the bar slower than observation. Bad news, Observer may contradict with eachother.

2023 major progress

4.6σ; CPTA Xu et al., 2023, RAA

W 社主大学 PEKING UNIVERSITY

3-4σ; NANOGrav Agazie et al., 2023, ApJL

3σ EPTA & InPTA, 2023, A&A

2σ; PPTA Reardon et al., 2023 ApJL

CPTA 2023

Nanograv 2023

EPTA 2023

2*alpha-3=gamma

$$A(f) = A_{\rm c} \left(\frac{f}{1 {\rm yr}^{-1}}\right)^{\alpha}$$

$$S(f) = \frac{A(f)^2}{12\pi^2 f^3}$$

Data quality

CPTA data precision is improved.

International Efforts

VLA

CHIME

MeerKAT

SKA

LOFAR

ngVLA

DSA2000

Domestic efforts

- FAST Array (aims for 64*40m)
 - FAST+24×40m=1.4-1.7 FAST, 50% more precise, sky coverage leads to double the pulsar number
- 3X120m
- low-frequency array (21CMA)

Progress of Chinese Radio Trinity

QTT 110m fullband radio teelscope at Xinjiang

In construction, should be ready in 3-5 years.

JRT/RST 120m low frequency (10GHz) radio telescope at Yunnan and Jilin. **Under construction.**

FAST EXT array

64 x 40m telescope around the FAST.

• Tsys: ~20K

Efficiency: 54.3%

40m station OTF

40m pulsar test obs.

40m-FAST fringe

21CMA upgrade

LNA 50-250MHz NF 0.4dB VSWR $< 1.5 \delta DB < 1dB$

21CMA 127X81 dipoles

SKA-low pilot project

Re-designed all of the RF front-end and backends.

Noise calibrator, 1e-4 variation over 90 hour, Thoise> 6500 K, VSWR < 1.12

2025 08 21 after first array upgrade

We are at the dawn of the NanoHz GW astronomy.

Thanks