A theory overview of high-energy cosmic neutrinos

Mauricio Bustamante

Niels Bohr Institute, University of Copenhagen

XIX TAUP

Xichang, China, August 25, 2025

VILLUM FONDEN

Synergies with lower energies

Synergies with lower energies

The story so far

(or
$$p + p$$
)

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, & \text{Br} = 2/3 \\ n + \pi^{+}, & \text{Br} = 1/3 \end{cases}$$

(or
$$p + p$$
)

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, & \text{Br} = 2/3 \\ n + \pi^{+}, & \text{Br} = 1/3 \end{cases}$$

$$\pi^{0} \rightarrow \gamma + \gamma$$

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow \bar{\nu}_{\mu} + e^{+} + \nu_{e} + \nu_{\mu}$$

$$n \text{ (escapes)} \rightarrow p + e^{-} + \bar{\nu}_{e}$$

Neutrino energy = Proton energy / 20 Gamma-ray energy = Proton energy / 10

(or
$$p + p$$
)

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, & \text{Br} = 2/3 \\ n + \pi^{+}, & \text{Br} = 1/3 \end{cases}$$

$$\pi^{0} \rightarrow \gamma + \gamma$$

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow \bar{\nu}_{\mu} + e^{+} + \nu_{e} + \nu_{\mu}$$

$$n \text{ (escapes)} \rightarrow p + e^{-} + \bar{\nu}_{e}$$

1 PeV 20 PeV

Neutrino energy = Proton energy / 20

Gamma-ray energy = Proton energy / 10

(or
$$p + p$$
)

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, & \text{Br} = 2/3 \\ n + \pi^{+}, & \text{Br} = 1/3 \end{cases}$$

$$\pi^{0} \rightarrow \gamma + \gamma$$

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow \bar{\nu}_{\mu} + e^{+} + \nu_{e} + \nu_{\mu}$$

$$n \text{ (escapes)} \rightarrow p + e^{-} + \bar{\nu}_{e}$$

1 PeV

20 PeV

Neutrino energy = Proton energy / 20

Gamma-ray energy = Proton energy / 10

Neutrinos from $p\gamma$ interactions

Neutrinos from *pp* interactions

Neutrino energy

Neutrino energy

Note: v sources can be steady-state or transient

Shower (mainly from v_e and v_{τ})

Poor angular resolution: $< 5^{\circ}$

Track (mainly from v_{μ})

Angular resolution: < 1°

Standard expectation:
Power-law energy spectrum

Standard expectation: Isotropy (for diffuse flux

Standard expectation: v and γ from transients arrive simultaneously

161/11A

Standard expectation:

Equal number of ν_{e} , ν_{μ} , ν_{τ}

Diffuse TeV–PeV υ flux: **IceCube**

New all-flavor flux measurement at 1 TeV-10 PeV

11 yr of Medium Energy Starting Events (MESE)

Cascades (v_e , v_μ , v_τ), tracks (v_μ), double cascades (v_τ)

Resolved structure in the cosmic neutrino spectrum at $> 4\sigma$

Features of neutrino production?

Two source populations?

New physics? (*E.g.*, dark-matter decay/annihilation)

SPL b.f.: $\Phi \propto E^{-\gamma}$ ($\gamma = 2.55$)

BPL b.f.:
$$\Phi \propto \begin{cases} E^{-\gamma_1}, E < E_b \\ E^{-\gamma_2}, E > E_b \end{cases}$$
 ($\gamma_1 = 1.72, \gamma_2 = 2.84, E_b = 33 \text{ TeV}$)

Multi-component model of astrophysical neutrinos

Arrival directions **Standard expectation:** Isotropy (for diffuse flux)

Standard expectation:

Standard expectation:

Arrival directions (7.5 yr)

No significant excess in the neutrino sky map:

Arrival directions (7.5 yr)

A multipole analysis of the high-energy v sky yields isotropy:

Standard expectation:

ver-law energy spectrum

Arrivaldi

Standard expectation:

Isotropy (fo

CH

Standard expectation: ν and γ from transients arrive

S IEVITAP

Standard expectation:

Equal number of ν_e , ν_{μ} , ν_{τ}

Up to a few Gpc

Different production mechanisms yield different flavor ratios:

$$(f_{e,S}, f_{\mu,S}, f_{\tau,S}) \equiv (N_{e,S}, N_{\mu,S}, N_{\tau,S})/N_{\text{tot}}$$

Flavor ratios at Earth ($\alpha = e, \mu, \tau$):

$$f_{\alpha,\oplus} = \sum_{\beta=e,\mu,\tau} P_{\nu_{\beta}\to\nu_{\alpha}} f_{\beta,S}$$

Up to a few Gpc

Different production mechanisms yield different flavor ratios:

$$(f_{e,S}, f_{\mu,S}, f_{\tau,S}) \equiv (N_{e,S}, N_{\mu,S}, N_{\tau,S})/N_{\text{tot}}$$

Flavor ratios at Earth
$$(\alpha = e, \mu, \tau)$$
:

Flavor ratios at Earth (
$$\alpha = e, \mu, \tau$$
):
$$f_{\alpha, \oplus} = \sum_{\beta = e, \mu, \tau} P_{\nu_{\beta} \to \nu_{\alpha}} f_{\beta, S}$$

Standard oscillations or new physics

From sources to Earth: we learn what to expect when measuring $f_{\alpha,\oplus}$

Assumes underlying unitarity – sum of projections on each axis is 1

How to read it:

Follow the tilt of the tick marks

Always in this order: $(f_{e'}f_{\mu'}f_{\tau})$

Assumes underlying unitarity – sum of projections on each axis is 1

How to read it:

Follow the tilt of the tick marks

Always in this order: (f_e, f_μ, f_τ)

Assumes underlying unitarity – sum of projections on each axis is 1

How to read it:

Follow the tilt of the tick marks

Always in this order: $(f_{e'}f_{\mu'}f_{\tau})$

Assumes underlying unitarity – sum of projections on each axis is 1

How to read it:

Follow the tilt of the tick marks

Always in this order: $(f_{e'}f_{\mu'}f_{\tau})$

One likely TeV–PeV ν production scenario: $p + \gamma \rightarrow \pi^+ \rightarrow \mu^+ + \nu_{\mu}$ followed by $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu}_{\mu}$

Full π decay chain (1/3:2/3:0)₅

Note: v and \bar{v} are (so far) indistinguishable in neutrino telescopes

One likely TeV–PeV v production scenario:

$$p + \gamma \rightarrow \pi^+ \rightarrow \mu^+ + \nu_{\mu}$$
 followed by $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu}_{\mu}$

One likely TeV–PeV ν production scenario:

$$p + \gamma \rightarrow \pi^+ \rightarrow \mu^+ + \nu_{\mu}$$
 followed by $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu}_{\mu}$

One likely TeV–PeV ν production scenario:

$$p + \gamma \rightarrow \pi^+ \rightarrow \mu^+ + \nu_{\mu}$$
 followed by $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu}_{\mu}$

One likely TeV–PeV ν production scenario:

$$p + \gamma \rightarrow \pi^+ \rightarrow \mu^+ + \nu_{\mu}$$
 followed by $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu}_{\mu}$

Standard expectation: ν and γ from transients arrive simultaneously

Standard expectation: Equal number of v_e , $v_{\mu\nu}$, v_{τ}

$$\int_0^\infty dE_{\nu} E_{\nu} F_{\nu}(E_{\nu}) = \frac{1}{8} \left[1 - \left(1 - \langle x_{p \to \pi} \rangle \right)^{\tau_{p\gamma}} \right] \frac{f_p}{f_e} \int_{1 \text{ keV}}^{10 \text{ MeV}} dE_{\gamma} E_{\gamma} F_{\gamma}(E_{\gamma})$$

$$\int_0^\infty dE_{\nu} E_{\nu} F_{\nu}(E_{\nu}) = \frac{1}{8} \left[1 - \left(1 - \langle x_{p \to \pi} \rangle \right)^{\tau_{p\gamma}} \right] \frac{f_p}{f_e} \int_{1 \text{ keV}}^{10 \text{ MeV}} dE_{\gamma} E_{\gamma} F_{\gamma}(E_{\gamma})$$

Optical depth to
$$p\gamma$$
: $\tau_{p\gamma} = \left(\frac{L_{\gamma}^{\rm iso}}{10^{52} {\rm erg s}^{-1}}\right) \left(\frac{0.01}{t_{\rm v}}\right) \left(\frac{300}{\Gamma}\right)^4 \left(\frac{\rm MeV}{\epsilon_{\gamma, \rm break}}\right)$

What have we learned about astrophysics?

Gamma-ray bursts and blazars – *not* dominant

Gamma-ray bursts Blazars

Gamma-ray bursts and blazars – *not* dominant

Gamma-ray bursts

Blazars

1172 GRBs inspected, no correlation found < 1% contribution to diffuse flux

862 blazars inspected, no correlation found < 27% contribution to diffuse flux

Gamma-ray bursts and blazars – *not* dominant

Gamma-ray bursts

Blazars

1172 GRBs inspected, no correlation found < 1% contribution to diffuse flux

862 blazars inspected, no correlation found

< 27% contribution to diffuse flux

... but we have seen one blazar neutrino flare!

Blazar TXS 0506+056:

2014–2015: 13 \pm 5 ν flare, no X-ray flare 3.5 σ significance of correlation (post-trial)

2017: one 290-TeV ν + X-ray flare 1.4 σ significance of correlation

Combined (pre-trial): 4.10

Hard fluence:
$$E^2 J_{100} = 2.1^{+0.9}_{-0.7} \left(\frac{E}{100 \text{ TeV}}\right)^{-2.1 \pm 0.2} \text{ TeV cm}^{-2}$$

Joint modeling of the two periods is challenging!

... but we have seen one blazar neutrino flare!

Blazar TXS 0506+056:

Combined (pre-trial): 4.10

Hard fluence:
$$E^2 J_{100} = 2.1^{+0.9}_{-0.7} \left(\frac{E}{100 \text{ TeV}}\right)^{-2.1 \pm 0.2} \text{ TeV cm}^{-2}$$

Joint modeling of the two periods is challenging!

NGC1068: The first steady-state source of high-energy v

Active galactic nucleus

Brightest type-2 Seyfert

 79^{+22}_{-20} v of TeV energy

Significance: 4.2\significance

Source discovery potential: today and in the future

Accounts for the observed diffuse v flux (lower/upper edge: rapid/no redshift evolution)

Closest source with $E^2 \phi_{\nu_{\mu} + \bar{\nu}_{\mu}} = 10^{-9} \text{ GeV cm}^{-2} \text{s}^{-1}$

From sources to Earth: we learn what to expect when measuring $f_{\alpha,\oplus}$

From Earth to sources: we let the data teach us about $f_{\alpha,S}$

Song, Li, Argüelles, *MB*, Vincent, *JCAP* 2021 *MB* & Ahlers, *PRL* 2019

Three models of Galactic diffuse v:

 π^0 : MeV–GeV π^0 template inferred from gamma rays extrapolated to TeV

 KRA_{γ}^{5} : Spectrum varies spatially, harder ν spectrum, cut-off at 5 PeV in CR energy

 KRA_{γ}^{50} : Cut-off at 50 PeV in CR energy

Observed (×0.5 model)
Cut-off energy could be different from the 5 and 50 PeV tested

Three models of Galactic diffuse v:

 π^0 : MeV–GeV π^0 template inferred from gamma rays extrapolated to TeV

 KRA_{γ}^{5} : Spectrum varies spatially, harder ν spectrum, cut-off at 5 PeV in CR energy

 KRA_{γ}^{50} : Cut-off at 50 PeV in CR energy

None of the models matched data

(caveat: there are relatively simple models)

No Galactic v source identified

(likely diffuse + source: Fang & Murase, 2307.02905)

GP flux is 6–13% of all-sky at 30 TeV

What have we learned about *particle physics*?

Fundamental physics with high-energy cosmic neutrinos

► Numerous new ν physics effects grow as ~ $\kappa_n \cdot E^n \cdot L$

► So we can probe $\kappa_n \sim 4 \cdot 10^{-47} \, (E/\text{PeV})^{-n} \, (L/\text{Gpc})^{-1} \, \text{PeV}^{1-n}$

▶ Improvement over limits using atmospheric v: κ_0 < 10⁻²⁹ PeV, κ_1 < 10⁻³³

Fundamental physics with high-energy cosmic neutrinos

► Numerous new ν physics effects grow as ~ $\kappa_n \cdot E^n \cdot L$ $\begin{cases} E.g., \\ n = -1: \text{ neutrino decay} \\ n = 0: \text{ CPT-odd Lorentz violation} \\ n = +1: \text{ CPT-even Lorentz violation} \end{cases}$

► So we can probe $\kappa_n \sim 4 \cdot 10^{-47} \, (E/\text{PeV})^{-n} \, (L/\text{Gpc})^{-1} \, \text{PeV}^{1-n}$

▶ Improvement over limits using atmospheric ν : κ_0 < 10⁻²⁹ PeV, κ_1 < 10⁻³³

Note: Not an exhaustive list

Note: Not an exhaustive list

Note: Not an exhaustive list

Note: Not an exhaustive list

A selection of neutrino physics

- 1 Neutrino-matter cross section
- 2 The Glashow resonance
- 3 Flavor physics
- 4 Secret neutrino interactions
- 5 Dark matter indirect detection
- 6 Neutrino decay

Find this in the backup slides

1. Neutrino-matter cross section: From TeV to PeV

Measuring the high-energy vN cross section

Below ~ 10 TeV: Earth is transparent

Above ~ 10 TeV: Earth is opaque

Measuring the high-energy vN cross section

Below ~ 10 TeV: Earth is transparent

Above ~ 10 TeV: Earth is opaque

Measuring the high-energy vN cross section

Below ~ 10 TeV: Earth is transparent

Above ~ 10 TeV: Earth is opaque

The future, now

A global network of neutrino telescopes

Ultra-high energies

Redshift = 0

z = 0

Article

Observation of an ultra-high-energy cosmic neutrino with KM3NeT

KM3NeT Collab. Nature 638, 376 (2025)

One muon detected with 120^{+110}_{-60} PeV

Article

Observation of an ultra-high-energy cosmic neutrino with KM3NeT

KM3NeT Collab. Nature 638, 376 (2025)

One muon detected with 120^{+110}_{-60} PeV

But is it due to a neutrino?

Yes! Direction points underground, after traveling 150 km through Earth

Inferred neutrino energy: 220₋₁₁₀⁺⁵⁷⁰ PeV

(Assuming E^{-2} spectrum)

Article

Observation of an ultra-high-energy cosmic neutrino with KM3NeT

KM3NeT Collab. Nature 638, 376 (2025)

One muon detected with 120^{+110}_{-60} PeV

But is it due to a neutrino?

Yes! Direction points underground, after traveling 150 km through Earth

Where did it come from?

From the Southern Hemisphere (RA = 94.3°, dec = -7.8°)

Not far from Milky Way plane But likely not of Milky-Way origin

KM3NeT Collab. arXiv:2502.08387

Likely extragalactic origin

Few extragalactic sources (blazars) near event position, but no strong association

Where did it come from?

From the Southern Hemisphere (RA = 94.3°, dec = -7.8°)

Not far from Milky Way plane But likely not of Milky-Way origin

KM3NeT Collab. arXiv:2502.08387

Likely extragalactic origin

Few extragalactic sources (blazars) near event position, but no strong association

dec. J2000 (°)

Diffuse flux of high-energy astrophysical v

KM3NeT Collab. *Nature* 638, 376 (2025)

Joint neutrino + cosmic-ray interpretation

High-energy IceCube successor

Radio array:

> 100 PeV v Askaryan radiation ~310 stations ~500 km²

~100× rate of EeV ν vs. IceCube

First cosmic-ray candidates shown at ICRC 2025

Thanks!

Backup slides

General stuff

Hillas criterion

A necessary condition to accelerate charged particles is confinement within the acceleration region.

Confinement holds until

Larmor radius (R_L) = Size of region (R)

$$rac{E_{
m max}}{ZeB}=eta\Gamma R$$

$$\Rightarrow E_{
m max}=\eta^{-1}eta\Gamma ZeBR$$
Acceleration efficiency

Hillas, Ann. Rev. Astron. Astrophys. 1984

Alves Batista et al. (inc. MB), Front. Astron. Space Sci. 2019

Hillas criterion

A necessary condition to accelerate charged particles is confinement within the acceleration region

Confinement holds until

Larmor radius (R_L) = Size of region (R)

$$rac{E_{
m max}}{ZeB}=eta\Gamma R$$

$$\Rightarrow E_{
m max}=\eta^{-1}eta\Gamma ZeBR$$
 Acceleration efficiency

Alves Batista et al. (inc. MB), Front. Astron. Space Sci. 2019

Hillas criterion

But not sufficient!

A necessary condition to accelerate charged particles is confinement within the acceleration region

Confinement holds until

Larmor radius (R_L) = Size of region (R)

$$\frac{E_{\text{max}}}{ZeB} = \beta \Gamma R$$

$$\Rightarrow E_{\text{max}} = \eta^{-1} \beta \Gamma ZeBR$$

Acceleration efficiency

Alves Batista et al. (inc. MB), Front. Astron. Space Sci. 2019

Bright in gamma rays, bright in high-energy neutrinos (?)

Energy in neutrinos ∝ energy in gamma rays
_{Waxman & Bahcall, PRL 1997}

Bright in gamma rays, bright in high-energy neutrinos (?)

Energy in neutrinos ← energy in gamma rays
Waxman & Bahcall, PRL 1997

Fudge factors:

Source properties (*e.g.*, baryonic loading) Particle effects (*e.g.*, v-producing channels)

Bright in gamma rays, bright in high-energy neutrinos (?)

Fudge factors:

Source properties (*e.g.*, baryonic loading) Particle effects (*e.g.*, v-producing channels)

But the correlation between v and γ may be more nuanced:

Gao, Pohl, Winter, ApJ 2017

Bright in gamma rays, bright in high-energy neutrinos (?)

Fudge factors:

Source properties (*e.g.*, baryonic loading) Particle effects (*e.g.*, v-producing channels)

But the correlation between v and γ may be more nuanced:

Gao, Pohl, Winter, ApJ 2017

Sources that make neutrinos via $p\gamma$ may be opaque to 1–100 MeV gamma rays

Murase, Guetta, Ahlers, PRL 2016

Modeling of $p\gamma$ interactions & nuclear cascading in the sources is complex and uncertain

Morejon, Fedynitch, Boncioli, Winter, *JCAP* 2019 Boncioli, Fedynitch, Winter, *Sci. Rep.* 2017

GW170817 (NS-NS merger)

- ▶ Short GRB seen in *Fermi*-GBM, INTEGRAL
- ► Neutrino search by IceCube, ANTARES, and Auger
- ► MeV–EeV neutrinos, 14-day window
- ► Non-detection consistent with off-axis

Using high-energy neutrinos as magnetometers

If sources have strong magnetic fields, charged particles cool via synchrotron:

Using high-energy neutrinos as magnetometers

If sources have strong magnetic fields, charged particles cool via synchrotron:

Using high-energy neutrinos as magnetometers

If sources have strong magnetic fields, charged particles cool via synchrotron:

Cross-section measurements

Number of detected neutrinos (simplified for presentation):

$$N \propto \Phi_{\nu} \sigma_{\nu N} e^{-\tau_{\nu N}} = \Phi_{\nu} \sigma_{\nu N} e^{-L\sigma_{\nu N} n_N}$$

Neutrino flux Cross section

Number of detected neutrinos (simplified for presentation):

$$N \propto \Phi_{
u} \sigma_{
u N} e^{- au_{
u N}} = \Phi_{
u} \sigma_{
u N} e^{-L\sigma_{
u N} n_N}$$
 Neutrino flux Cross section

Downgoing neutrinos (L short \rightarrow no matter)

$$N \propto \Phi_{\nu} \sigma_{\nu N}$$

Number of detected neutrinos (simplified for presentation):

$$N \propto \Phi_{
u} \sigma_{
u N} e^{- au_{
u N}} = \Phi_{
u} \sigma_{
u N} e^{-L\sigma_{
u N} n_N}$$
 Neutrino flux Cross section

Downgoing neutrinos (L short \rightarrow no matter)

$$N \propto \Phi_{
u} \sigma_{
u N}$$
 Degeneracy

Number of detected neutrinos (simplified for presentation):

$$N \propto \Phi_{\nu} \sigma_{\nu N} e^{- au_{\nu N}} = \Phi_{\nu} \sigma_{\nu N} e^{-L\sigma_{\nu N} n_N}$$

Neutrino flux Cross section

Downgoing neutrinos (L short \rightarrow no matter)

$$N \propto \Phi_{
u} \sigma_{
u N}$$
 Degeneracy

Upgoing neutrinos ($L \log \rightarrow \log \log m$)

$$N \propto \Phi_{\nu} \sigma_{\nu N} e^{-L\sigma_{\nu N} n_N}$$

Number of detected neutrinos (simplified for presentation):

$$N \propto \Phi_{\nu} \sigma_{\nu N} e^{-\tau_{\nu N}} = \Phi_{\nu} \sigma_{\nu N} e^{-L\sigma_{\nu N} n_N}$$
 Neutrino flux Cross section

Downgoing neutrinos (L short \rightarrow no matter)

$$N \propto \Phi_{
u} \sigma_{
u N}$$
 Degeneracy

Upgoing neutrinos ($L \log \rightarrow \log \log m$)

$$N \propto \Phi_{\nu} \sigma_{\nu N} e^{-L\sigma_{\nu N} n_N}$$

Breaks the degeneracy

A feel for the in-Earth attenuation

Earth matter density

(Preliminary Reference Earth Model)

Neutrino-nucleon cross section

A feel for the in-Earth attenuation

MB & Connolly, PRL 2019

MB & Connolly, PRL 2019

2. Glashow resonance: Long-sought, finally seen

Predicted in 1960:

First reported by IceCube in 2021:

Predicted in 1960:

First reported by IceCube in 2021:

First observation of a Glashow resonance

Predicted in 1960:

First reported by IceCube in 2021:

First observation of a Glashow resonance

Predicted in 1960:

First reported by IceCube in 2021:

First observation of a Glashow resonance

Predicted in 1960:

First reported by IceCube in 2021:

Glashow, PR 1960

3. New physics via flavor *Hard to do, but worth it*

Up to a few Gpc

Different production mechanisms yield different flavor ratios:

$$(f_{e,S}, f_{\mu,S}, f_{\tau,S}) \equiv (N_{e,S}, N_{\mu,S}, N_{\tau,S})/N_{\text{tot}}$$

Flavor ratios at Earth ($\alpha = e, \mu, \tau$):

$$f_{\alpha,\oplus} = \sum_{\beta=e,\mu,\tau} P_{\nu_{\beta}\to\nu_{\alpha}} f_{\beta,S}$$

Up to a few Gpc

Different production mechanisms yield different flavor ratios:

$$(f_{e,S}, f_{\mu,S}, f_{\tau,S}) \equiv (N_{e,S}, N_{\mu,S}, N_{\tau,S})/N_{\text{tot}}$$

Flavor ratios at Earth
$$(\alpha = e, \mu, \tau)$$
:

Flavor ratios at Earth (
$$\alpha = e, \mu, \tau$$
):
$$f_{\alpha, \oplus} = \sum_{\beta = e, \mu, \tau} P_{\nu_{\beta} \to \nu_{\alpha}} f_{\beta, S}$$

Standard oscillations or new physics

From sources to Earth: we learn what to expect when measuring $f_{\alpha,\oplus}$

Known from oscillation experiments, to different levels of precision

Note:

Repurpose the flavor sensitivity to test new physics:

Use the flavor sensitivity to test new physics:

Use the flavor sensitivity to test new physics:

► Neutrino decay
[Beacom *et al.*, *PRL* 2003; Baerwald, *MB*, Winter, JCAP 2010; *MB*, Beacom, Winter, *PRL* 2015; *MB*, Beacom, Murase, *PRD* 2017]

Reviews:

Use the flavor sensitivity to test new physics:

- ► Neutrino decay
 [Beacom *et al.*, *PRL* 2003; Baerwald, *MB*, Winter, JCAP 2010; *MB*, Beacom, Winter, *PRL* 2015; *MB*, Beacom, Murase, *PRD* 2017]
- ► Tests of unitarity at high energy [Xu, He, Rodejohann, JCAP 2014; Ahlers, MB, Mu, PRD 2018; Ahlers, MB, Nortvig, JCAP 2021]

Reviews:

Use the flavor sensitivity to test new physics:

- ► Neutrino decay
 [Beacom *et al.*, *PRL* 2003; Baerwald, *MB*, Winter, JCAP 2010; *MB*, Beacom, Winter, *PRL* 2015; *MB*, Beacom, Murase, *PRD* 2017]
- ► Tests of unitarity at high energy [Xu, He, Rodejohann, JCAP 2014; Ahlers, MB, Mu, PRD 2018; Ahlers, MB, Nortvig, JCAP 2021]
- ► Lorentz- and CPT-invariance violation [Barenboim & Quigg, PRD 2003; MB, Gago, Peña-Garay, JHEP 2010; Kostelecky & Mewes 2004; Argüelles, Katori, Salvadó, PRL 2015]

Use the flavor sensitivity to test new physics:

- ► Neutrino decay
 [Beacom *et al.*, *PRL* 2003; Baerwald, *MB*, Winter, JCAP 2010; *MB*, Beacom, Winter, *PRL* 2015; *MB*, Beacom, Murase, *PRD* 2017]
- ► Tests of unitarity at high energy [Xu, He, Rodejohann, JCAP 2014; Ahlers, MB, Mu, PRD 2018; Ahlers, MB, Nortvig, JCAP 2021]
- ► Lorentz- and CPT-invariance violation [Barenboim & Quigg, PRD 2003; MB, Gago, Peña-Garay, JHEP 2010; Kostelecky & Mewes 2004; Argüelles, Katori, Salvadó, PRL 2015]
- ► Non-standard interactions [González-García et al., Astropart. Phys. 2016; Rasmussen et al., PRD 2017]

Reviews:

Use the flavor sensitivity to test new physics:

► Neutrino decay
[Beacom *et al.*, *PRL* 2003; Baerwald, *MB*, Winter, JCAP 2010; *MB*, Beacom, Winter, *PRL* 2015; *MB*, Beacom, Murase, *PRD* 2017]

- ► Tests of unitarity at high energy [Xu, He, Rodejohann, JCAP 2014; Ahlers, MB, Mu, PRD 2018; Ahlers, MB, Nortvig, JCAP 2021]
- ► Lorentz- and CPT-invariance violation [Barenboim & Quigg, PRD 2003; MB, Gago, Peña-Garay, JHEP 2010; Kostelecky & Mewes 2004; Argüelles, Katori, Salvadó, PRL 2015]
- ► Non-standard interactions [González-García et al., Astropart. Phys. 2016; Rasmussen et al., PRD 2017]
- ► Active-sterile v mixing
 [Aeikens et al., JCAP 2015; Brdar, Kopp, Wang, JCAP 2017;
 Argüelles et al., JCAP 2020; Ahlers, MB, JCAP 2021]

Reviews:

Use the flavor sensitivity to test new physics:

► Neutrino decay
[Beacom *et al., PRL* 2003; Baerwald, *MB*, Winter, JCAP 2010; *MB*, Beacom, Winter, *PRL* 2015; *MB*, Beacom, Murase, *PRD* 2017]

► Tests of unitarity at high energy [Xu, He, Rodejohann, JCAP 2014; Ahlers, MB, Mu, PRD 2018; Ahlers, MB, Nortvig, JCAP 2021]

► Lorentz- and CPT-invariance violation [Barenboim & Quigg, PRD 2003; MB, Gago, Peña-Garay, JHEP 2010; Kostelecky & Mewes 2004; Argüelles, Katori, Salvadó, PRL 2015]

► Non-standard interactions [González-García et al., Astropart. Phys. 2016; Rasmussen et al., PRD 2017]

► Active-sterile v mixing [Aeikens et al., JCAP 2015; Brdar, Kopp, Wang, JCAP 2017; Argüelles et al., JCAP 2020; Ahlers, MB, JCAP 2021]

► Long-range ev interactions [MB & Agarwalla, PRL 2019]

Lorentz-invariance violation can fill up the flavor triangle

$$H_{\text{tot}} = H_{\text{std}} + H_{\text{NP}}$$

$$H_{\mathrm{std}} = \frac{1}{2F} U_{\mathrm{PMNS}}^{\dagger} \operatorname{diag}\left(0, \Delta m_{21}^{2}, \Delta m_{31}^{2}\right) U_{\mathrm{PMNS}}$$

$$H_{\mathsf{NP}} = \sum \left(\frac{E}{\Lambda_n}\right)^n U_n^\dagger \operatorname{diag}\left(O_{n,1}, O_{n,2}, O_{n,3}\right) U_n$$

See also: Ahlers, MB, Mu, PRD 2018; Rasmusen et al., PRD 2017; MB, Beacom, Winter PRL 2015; MB, Gago, Peña-Garay JCAP 2010; Bazo, MB, Gago, Miranda IJMPA 2009; + many others

How knowing the mixing parameters better helps

4. New neutrino interactions: Are there secret vv interactions?

Galactic (kpc) or extragalactic (Mpc – Gpc) distance

Secret interactions of high-energy astrophysical neutrinos

"Secret" neutrino interactions between astrophysical v (PeV) and relic v (0.1 meV):

Cross section:
$$\sigma = \frac{g^4}{4\pi} \frac{s}{(s - M^2)^2 + M^2 \Gamma^2}$$

Resonance energy:
$$E_{\text{res}} = \frac{M^2}{2m_{\gamma}}$$

MB, Rosenstroem, Shalgar, Tamborra, PRD 2020 See also: Esteban, Pandey, Brdar, Beacom, PRD 2021 Creque-Sarbinowski, Hyde, Kamionkowski, PRD 2021 Ng & Beacom, PRD 2014 Cherry, Friedland, Shoemaker, 1411.1071 Blum, Hook, Murase, 1408.3799

"Secret" neutrino interactions between astrophysical v (PeV) and relic v (0.1 meV):

Cross section: $\sigma = \frac{g^4}{4\pi} \frac{s}{(s - M^2)^2 + M^2\Gamma^2}$ Mediator r

Resonance energy:
$$E_{\text{res}} = \frac{M^2}{2m_{\chi}}$$

MB, Rosenstroem, Shalgar, Tamborra, PRD 2020 See also: Esteban, Pandey, Brdar, Beacom, PRD 2021 Creque-Sarbinowski, Hyde, Kamionkowski, PRD 2021 Ng & Beacom, PRD 2014 Cherry, Friedland, Shoemaker, 1411.1071 Blum, Hook, Murase, 1408.3799

"Secret" neutrino interactions between astrophysical v (PeV) and relic v (0.1 meV):

Cross section: $\sigma = \frac{g^4}{4\pi} \frac{s}{(s - M^2)^2 + M^2\Gamma^2}$ Mediator 1

Resonance energy:
$$E_{\text{res}} = \frac{M^2}{2m_{\gamma}}$$

MB, Rosenstroem, Shalgar, Tamborra, PRD 2020
See also: Esteban, Pandey, Brdar, Beacom, PRD 2021
Creque-Sarbinowski, Hyde, Kamionkowski, PRD 2021
Ng & Beacom, PRD 2014
Cherry, Friedland, Shoemaker, 1411.1071
Blum, Hook, Murase, 1408.3799

"Secret" neutrino interactions between astrophysical v (PeV) and relic v (0.1 meV):

Cross section: $\sigma = \frac{g^4}{4\pi} \frac{s}{(s - M^2)^2 + M^2\Gamma^2}$ Mediator 1

Resonance energy:
$$E_{\text{res}} = \frac{M^2}{2m_{\gamma}}$$

MB, Rosenstroem, Shalgar, Tamborra, PRD 2020 See also: Esteban, Pandey, Brdar, Beacom, PRD 2021 Creque-Sarbinowski, Hyde, Kamionkowski, PRD 2021 Ng & Beacom, PRD 2014 Cherry, Friedland, Shoemaker, 1411.1071 Blum, Hook, Murase, 1408.3799

"Secret" neutrino interactions between astrophysical v (PeV) and relic v (0.1 meV):

Cross section:
$$\sigma = \frac{g^4}{4\pi} \frac{s}{(s - (M^2)^2 + M^2\Gamma^2)}$$
Mediator ma

Resonance energy:
$$E_{\text{res}} = \frac{M^2}{2m_{\gamma}}$$

MB, Rosenstroem, Shalgar, Tamborra, PRD 2020 See also: Esteban, Pandey, Brdar, Beacom, PRD 2021 Creque-Sarbinowski, Hyde, Kamionkowski, PRD 2021 Ng & Beacom, PRD 2014 Cherry, Friedland, Shoemaker, 1411.1071 Blum, Hook, Murase, 1408.3799

Looking for evidence of vSI

- ► Look for dips in 6 years of public IceCube data (HESE)
- ▶ 80 events, 18 TeV–2 PeV
- ► Assume flavor-diagonal and universal: $g_{\alpha\alpha} = g \delta_{\alpha\alpha}$
- ► Bayesian analysis varying M, g, shape of emitted flux (γ)
- Account for atmospheric ν, in-Earth propagation, detector uncertainties

No significant ($> 3\sigma$) evidence for a spectral dip ...

No significant ($> 3\sigma$) evidence for a spectral dip ... so we set upper limits on the coupling g

No significant ($> 3\sigma$) evidence for a spectral dip ... so we set upper limits on the coupling g

5. Dark matter: *Annihilation and decay into v*

High-energy neutrinos from dark matter

Dark matter co-annihilation:

$$\chi + \chi \to \nu + \bar{\nu}$$

$$\chi + \chi \to \dots \to \nu + \bar{\nu} + \dots$$

$$E_{\text{max}} = m_{\chi}$$

Dark matter decay:

$$\chi \to \nu + \bar{\nu}$$
 $\chi \to \dots \to \nu + \bar{\nu} + \dots$
 $E_{\text{max}} = m_{\chi}/2$

Electroweak corrections (off-shell W and Z emission) broaden the v spectrum

v + v yield from DM (at source)

Approximate independence on m_{χ} valid for $m_{\chi} \approx 100 \text{ TeV}{-}10 \text{ PeV}$

Dark matter in the Milky Way

IceCube, PRD 2023

 10^{25}

Limits on dark matter <u>decay</u>

Per annihilation channel (assuming 100% branching ratio)

Compared to other limits (assuming decay into muons)

Two DM contributions: Galactic (anisotropic) + extragalactic (isotropic) Plus background of atmospheric neutrinos (anisotropic, but different)

Limits on dark matter annihilation

Per annihilation channel (assuming 100% branching ratio)

Two DM contributions: Galactic (anisotropic) + extragalactic (isotropic) Plus background of atmospheric neutrinos (anisotropic, but different)

Limits on dark matter annihilation

Per annihilation channel (assuming 100% branching ratio)

Compared to other limits (assuming annihilation to muons)

Two DM contributions: Galactic (anisotropic) + extragalactic (isotropic) Plus background of atmospheric neutrinos (anisotropic, but different)

6. Unstable neutrinos: *Are neutrinos for ever?*

Are neutrinos forever?

- ▶ In the Standard Model (vSM), neutrinos are essentially stable ($\tau > 10^{36}$ yr):
 - ► One-photon decay $(v_i \rightarrow v_i + \gamma)$: $\tau > 10^{36} (m_i/\text{eV})^{-5} \text{ yr}$
 - Two-photon decay $(v_i \rightarrow v_j + \gamma)$. $t > 10^{-6} (m_i/\text{eV})^{-6} \text{yr}$ $= 10^{-6} (m_i/\text{eV})^{-6} \text{yr}$
 - ► Three-neutrino decay $(v_i \rightarrow v_i + v_k + \overline{v_k})$: $\tau > 10^{55}$ $(m_i/\text{eV})^{-5}$ yr

» Age of Universe (~ 14.5 Gyr)

► BSM decays may have significantly higher rates: $v_i \rightarrow v_i + \varphi$

▶ We work in a model-independent way: the nature of φ is unimportant if it is invisible to neutrino detectors

Are neutrinos forever?

- ▶ In the Standard Model (vSM), neutrinos are essentially stable ($\tau > 10^{36}$ yr):
 - ► One-photon decay $(v_i \rightarrow v_j + \gamma)$: $\tau > 10^{36} (m_i/\text{eV})^{-5} \text{ yr}$
 - ► Two-photon decay $(v_i \rightarrow v_j + \gamma + \gamma)$: $\tau > 10^{57} (m_i/\text{eV})^{-9} \text{ yr}$
 - ► Three-neutrino decay $(v_i \rightarrow v_j + v_k + \overline{v_k})$: $\tau > 10^{55} (m_i/\text{eV})^{-5} \text{ yr}$

» Age of Universe (~ 14.5 Gyr)

- ► BSM decays may have significantly higher rates: $v_i \rightarrow v_j \leftarrow \phi$ Nambu-Goldstone boson of a broken symmetry
- ▶ We work in a model-independent way: the nature of φ is unimportant if it is invisible to neutrino detectors

$L \sim \text{up to a few Gpc}$

The flux of v_i is attenuated by $\exp[-(L/E) \cdot (m_i/\tau_i)]$ Mass of v_i Lifetime of v_i

$L \sim \text{up to a few Gpc}$

Decay changes the number

of each v mass eigenstate, N_1 , N_2 , N_3

Only sensitive to their ratio

The flux of v_i is attenuated by $\exp[-(L/E) \cdot (m_i/\tau_i)]$ Mass of v_i Lifetime of v_i

40

$L \sim \text{up to a few Gpc}$

Decay changes the number

of each v mass eigenstate, N_1 , N_2 , N_3

Lower-*E*v are longer-lived...

The flux of v_i is attenuated by $\exp[-(L/E) \cdot (m_i/\tau_i)]$

... but v that travel longer *L* are more attenuated!

Astrophysical sources

Earth

 $L \sim \text{up to a few Gpc}$

ordering)

(see Winter & Mehta, JCAP 2011)

Astrophysical sources

Earth

$L \sim \text{up to a few Gpc}$

ν₁ lightest and stable (normal mass ordering)

What does decay change?

Fine print:

- ▶ Decay can be incomplete
- ▶ Final-state v might be detectable or not
- ► Many more possible decay channels (see Winter & Mehta, JCAP 2011)

$v_1, v_2 \rightarrow v_3$

v₃ lightest and stable (inverted mass ordering)

Flavor composition Spectrum shape Event rate

Flavor composition Spectrum shape

Event rate

Flavor content of mass eigenstates:

Flavor composition Spectrum shape Event rate $v_2, v_3 \rightarrow v_1$ v₁ lightest and stable (normal mass ordering) E.g., $\nu_1, \nu_2 \rightarrow \nu_3$ v₃ lightest and stable (inverted mass ordering)

See also: Beacom et al., PRL 2002 / Baerwald, MB, Winter, JCAP 2012 / MB, Beacom, Murase, PRD 2017 / Rasmussen et al., PRD 2017 / Denton & Tamborra, PRL 2018 / Abdullahi & Denton, PRD 2020 / MB, 2004.06844

Spectrum shape

See also: Beacom et al., PRL 2002 / Baerwald, MB, Winter, JCAP 2012 / MB, Beacom, Murase, PRD 2017 / Rasmussen et al., PRD 2017 / Denton & Tamborra, PRL 2018 / Abdullahi & Denton, PRD 2020 / MB, 2004.06844

Spectrum shape

See also: Beacom et al., PRL 2002 / Baerwald, MB, Winter, JCAP 2012 / MB, Beacom, Murase, PRD 2017 / Rasmussen et al., PRD 2017 / Denton & Tamborra, PRL 2018 / Abdullahi & Denton, PRD 2020 / MB, 2004.06844

Spectrum shape

See also: Beacom et al., PRL 2002 / Baerwald, MB, Winter, JCAP 2012 / MB, Beacom, Murase, PRD 2017 / Rasmussen et al., PRD 2017 / Denton & Tamborra, PRL 2018 / Abdullahi & Denton, PRD 2020 / MB, 2004.06844

Flavor composition

Spectrum shape

See also: Beacom et al., PRL 2002 / Baerwald, MB, Winter, JCAP 2012 / MB, Beacom, Murase, PRD 2017 / Rasmussen et al., PRD 2017 / Denton & Tamborra, PRL 2018 / Abdullahi & Denton, PRD 2020 / MB, 2004.06844

Spectrum shape

See also: Beacom et al., PRL 2002 / Baerwald, MB, Winter, JCAP 2012 / MB, Beacom, Murase, PRD 2017 / Rasmussen et al., PRD 2017 / Denton & Tamborra, PRL 2018 / Abdullahi & Denton, PRD 2020 / MB, 2004.06844

Spectrum shape

See also: Beacom et al., PRL 2002 / Baerwald, MB, Winter, ICAP 2012 / MB, Beacom, Murase, PRD 2017 / Rasmussen et al., PRD 2017 / Denton & Tamborra, PRL 2018 / Abdullahi & Denton, PRD 2020 / MB, 2004.06844

Spectrum shape

See also: Beacom et al., PRL 2002 / Baerwald, MB, Winter, JCAP 2012 / MB, Beacom, Murase, PRD 2017 / Rasmussen et al., PRD 2017 / Denton & Tamborra, PRL 2018 / Abdullahi & Denton, PRD 2020 / MB, 2004.06844

Spectrum shape

See also: Beacom et al., PRL 2002 / Baerwald, MB, Winter, JCAP 2012 / MB, Beacom, Murase, PRD 2017 / Rasmussen et al., PRD 2017 / Denton & Tamborra, PRL 2018 / Abdullahi & Denton, PRD 2020 / MB, 2004.06844

See also: Beacom *et al.*, *PRL* 2002 / Baerwald, **MB**, Winter, *JCAP* 2012 / Rasmussen *et al.*, *PRD* 2017 / Denton & Tamborra, *PRL* 2018 / Abdullahi & Denton, *PRD* 2020 / **MB**, 2004.06844 / Song, Li, Argüelles, **MB**, Vincent, *JCAP* 2020

Neutrino energy E_0 [GeV]

See also: Beacom *et al.*, *PRL* 2002 / Baerwald, **MB**, Winter, *JCAP* 2012 / **MB**, Beacom, Murase, *PRD* 2017 / Rasmussen *et al.*, *PRD* 2017 / Denton & Tamborra, *PRL* 2018 / Abdullahi & Denton, *PRD* 2020 / Song, Li, Argüelles, **MB**, Vincent, *JCAP* 2020

Event rate

See also: Beacom *et al.*, *PRL* 2002 / Baerwald, **MB**, Winter, *JCAP* 2012 / **MB**, Beacom, Murase, *PRD* 2017 / Rasmussen *et al.*, *PRD* 2017 / Denton & Tamborra, *PRL* 2018 / Abdullahi & Denton, *PRD* 2020 / Song, Li, Argüelles, **MB**, Vincent, *JCAP* 2020

Event rate

Deposited energy E_{dep} [GeV]

See also: Beacom et al., PRL 2002 / Baerwald, MB, Winter, JCAP 2012 / MB, Beacom, Murase, PRD 2017 / Rasmussen et al., PRD 2017 / Denton & Tamborra, PRL 2018 / Abdullahi & Denton, PRD 2020 / Song, Li, Argüelles, MB, Vincent, JCAP 2020

Visible energy (PeV)

See also: Beacom *et al.*, *PRL* 2002 / Baerwald, **MB**, Winter, *JCAP* 2012 / **MB**, Beacom, Murase, *PRD* 2017 / Rasmussen *et al.*, *PRD* 2017 / Denton & Tamborra, *PRL* 2018 / Abdullahi & Denton, *PRD* 2020 / Song, Li, Argüelles, **MB**, Vincent, *JCAP* 2020

See also: Beacom et al., PRL 2002 / Baerwald, MB, Winter, JCAP 2012 / MB, Beacom, Murase, PRD 2017 / Rasmussen et al., PRD 2017 / Denton & Tamborra, PRL 2018 / Abdullahi & Denton, PRD 2020 / Song, Li, Argüelles, MB, Vincent, JCAP 2020

Event rate

If \bar{v}_1 had decayed en route to Earth, there would not have been \bar{v}_e left to trigger a GR

See also: Beacom *et al.*, *PRL* 2002 / Baerwald, **MB**, Winter, *JCAP* 2012 / **MB**, Beacom, Murase, *PRD* 2017 / Rasmussen *et al.*, *PRD* 2017 / Denton & Tamborra, *PRL* 2018 / Abdullahi & Denton, *PRD* 2020 / Song, Li, Argüelles, **MB**, Vincent, *JCAP* 2020

Event rate

Glashow resonance (GR): $\bar{v}_e + e \rightarrow W \rightarrow \text{hadrons} \rightarrow \text{shower}$

So by having observed 1 GR event we can place a *lower* limit on the lifetime of \bar{v}_1 (= v_1)

If \bar{v}_1 had decayed en route to Earth, there would not have been \bar{v}_e left to trigger a GR

See also: Beacom *et al.*, *PRL* 2002 / Baerwald, **MB**, Winter, *JCAP* 2012 / **MB**, Beacom, Murase, *PRD* 2017 / Rasmussen *et al.*, *PRD* 2017 / Denton & Tamborra, *PRL* 2018 / Abdullahi & Denton, *PRD* 2020 / Song, Li, Argüelles, **MB**, Vincent, *JCAP* 2020

Flavor composition

Spectrum shape

Event rate

MB, 2004.06844

See also: Beacom *et al.*, *PRL* 2002 / Baerwald, **MB**, Winter, *JCAP* 2012 / **MB**, Beacom, Murase, *PRD* 2017 / Rasmussen *et al.*, *PRD* 2017 / Denton & Tamborra, *PRL* 2018 / Abdullahi & Denton, *PRD* 2020 / Song, Li, Argüelles, **MB**, Vincent, *JCAP* 2020

Flavor composition

Spectrum shape

Event rate

MB, 2004.06844

See also: Beacom *et al.*, *PRL* 2002 / Baerwald, **MB**, Winter, *JCAP* 2012 / **MB**, Beacom, Murase, *PRD* 2017 / Rasmussen *et al.*, *PRD* 2017 / Denton & Tamborra, *PRL* 2018 / Abdullahi & Denton, *PRD* 2020 / Song, Li, Argüelles, **MB**, Vincent, *JCAP* 2020

See also: Beacom *et al.*, *PRL* 2002 / Baerwald, **MB**, Winter, *JCAP* 2012 / **MB**, Beacom, Murase, *PRD* 2017 / Rasmussen *et al.*, *PRD* 2017 / Denton & Tamborra, *PRL* 2018 / Abdullahi & Denton, *PRD* 2020 / Song, Li, Argüelles, **MB**, Vincent, *JCAP* 2020

Source searches, Galactic neutrinos

Neutrinos from the Galaxy

See also: Beacom & Candia, JCAP 2004

Neutrinos from the Galaxy

See also: Beacom & Candia, JCAP 2004

Neutrinos from the Galaxy

See also: Beacom & Candia, JCAP 2004

Neutrinos from the Galaxy: IceCube

Improvements without template fitting

±8° width in Galactic latitude -40° < Galactic longitude < 40°

Divide the Galactic Plane into 3 generic segments [other segmentation schemes, too (*e.g.*, 2, 6)]

Same cascade sample as 2023 discovery

Same unbinned maximum likelihood ... but now segmented

In each segment: single power law Fit flux normalization and spectral index

Note: No systematics yet

Neutrinos from the Galaxy: IceCube

Improvements without template fitting

Neutrinos from the Galaxy: IceCube

Improvements without template fitting

3 Segments

Constraints from the gamma-ray background

- ▶ Production via pp: v and gamma-ray spectra follow the CR spectrum E^{Γ}
- ► Gamma-ray interactions on the CMB make them pile up at GeV
- ► *Fermi* gamma-ray background is not exceeded only if Γ < 2.2
- ▶ But IceCube found $\Gamma = 2.5 2.7$
- ► Therefore, production via *pp* is disfavored between 10–100 TeV

Diffuse TeV–PeV υ flux: **IceCube**

1 – New all-flavor flux measurement at 1 TeV–10 PeV

Diffuse TeV–PeV υ flux: **IceCube**

2 – New measurement using cascades at > 10 TeV

11 yr of cascade data

Cascades (v_e , v_μ , v_τ) and double cascades (v_τ)

Background to double-cascade search: v_e charged-current cascades v_e , v_μ , v_τ neutral-current cascades v_μ , starting tracks

Extra cuts to find double cascades (+ self-veto): total energy > 10^{4.5} GeV inter-cascade length > 10 m energy asymmetry

Produce v_{τ} -enriched sample with 90% v_{τ} purity (Great for flavor measurements, see later)

Diffuse TeV–PeV υ flux: **IceCube**

2 – New measurement using cascades at > 10 TeV

11 yr of cascade data

Cascades (v_e , v_μ , v_τ) and double cascades (v_τ)

Single-power-law (SPL) fit to data,

$$\Phi = \Phi_0 \times \left(\frac{E}{100 \text{ TeV}}\right)^{-\gamma} ,$$

agrees with previous results

Best-fit values:

$$\Phi_0 = 1.83 \pm 0.21$$

$$\gamma = 2.68 \pm 0.06$$

UHE neutrinos

New upper limits on UHE neutrinos: IceCube

Search for UHE v updated from 9 to 12.6 yr

Strongest UHE limit today

Improvement due to 40% higher ν_{μ} $A_{\rm eff}$: Improved angular resolution Looser muon bundle cuts

Repeating the joint fit of the UHE KM3-230213A with IceCube and Auger increases the tension from 2.5σ to 2.9σ

Also: new limits on UHECR proton fraction

The KM3NeT UHE neutrino

Was it a cosmogenic neutrino?

Assume population of nondescript, identical UHECR sources UHECR flux fit to Auger spectrum + mass composition, source abundance $(1+z)^m$

KM3NeT Collab. ApJL 2025

BSM with the KM3NeT UHE neutrino

Beyond the Standard Model

New energies represent new opportunities to look for BSM physics, e.g.,

UHE ν from decay of super-heavy dark matter UHE ν from primordial black holes Sterile-active ν transitions Lorentz-invariance violation

Caveat emptor!

Being able to explain KM3-230213A with BSM physics *does not* mean that a BSM explanation is preferred (always compute your Bayes factors!)

See backup slides for BSM proposals inspired by KM3-230213A

Lorentz-invariance violation — from superluminal speeds

A superluminal ν loses energy via pair production, *i.e.*,

$$V \rightarrow V + e^+ + e^-$$

Cohen & Glashow, PRL 2011

Excess over light speed: $\delta = c_v - 1$

Decay length: $L_{\text{dec}} = c_v / \Gamma \propto E^{-5} \delta^{-3}$ Decay width

Demanding that the travel distance $L < 10 L_{dec}$ sets upper limits on δ

New limit is ~1000 times stronger than previous one from TXS 0506+056

Lorentz-invariance violation — from a GRB association

GRB emitted neutrinos & photons simultaneously

Time delay induced by dispersion of neutrinos on spacetime foam:

Neutrino energy

 $\Delta t = D(z)$ $\frac{L}{L} \approx 14 \text{ years}$ Cosmological

expansion

Energy scale of LIV $(10^{14}-10^{15} \text{ GeV})$

GRB-v association: 2.40 (*p*-value of 0.015)

Decay of heavy dark matter (DM $\rightarrow \nu + \nu$)

Decay of heavy dark matter (DM $\rightarrow \nu + \nu$)

Decay of heavy dark matter — supersymmetric

Multi-component DM: heavy (χ , unstable) & lighter ($\tilde{\chi}_-$, stable)

Sterile-active v transitions

Sterile-active v transitions

New neutrino-baryon interactions inside Earth (by gauging $U(1)_B$ symmetry)

Relative strength vs. standard weak interaction: $\epsilon_{ss} = G_B/(\sqrt{2}G_F)$

For $-\epsilon_{ss}$ = 150, transitions are resonant in KM3NeT, but not in IceCube

Primordial black hole evaporation

 $GeV s^{-1} cm^{-2} sr^{-1}$

 E_{ν}^2 (

Primordial black holes (PBHs) evaporate through Hawking radiation

"Memory burden" effect: quantum back-reaction lengthens the life of the black hole

Most of the contribution is from intermediate-mass PBHs, transitioning to memory burden

Galactic + extragalactic contributions, monochromatic mass spectrum, PBHs make up all of DM

Mirror neutrons

Can reconcile large cosmogenic v flux inspired by KM3-230213A and heavy UHECR mass composition

But cannot explain lack of IceCube events

Joint fits to Auger UHECR data + neutrino data from IceCube and KM3NeT

$$n \rightarrow n'$$
 $n' \rightarrow \overline{\nu}'_e + e'_- + (p'_+ \rightarrow \pi'_+ \nu)$

Mirror neutrons

Alves, Hostert, Pospelov, 2503.14419