

基于CFD的球形燃料元件气力抽吸 行为数值研究 ——2025年"核理安邦"联合博士生学术论坛

汇报人:穆云梦

单 位:清华大学核能与新能源技术研究院

球床模块式高温气冷堆 (HTR-PM)

研究背景

燃料装卸与乏燃料贮存系统

1 模型简化及网格划分

贮罐直径相较于燃料元件直径较大,当气力输送系统抽吸时,侧方罐壁对燃料元件周围流体影响 较小。考虑计算成本,对计算模型进行简化处理。

计算参数设置					
湍流模型	k-ω SST				
压力-速度耦合算法	SIMPLEC				
压力项离散格式	Standard				
动量离散格式	二阶迎风				
湍动能离散格式	二阶迎风				
瞬态公式	二阶隐式				
时间步长	1×10 ⁶ ~5×10 ⁵				

网格无关性验证计算结果

	编号	网格总数	y方向受力	x方向受力
_		(万)	(<u>N)</u>	<u>(N)</u>
÷.	1	560	1.44	0.27
-	2	930	1.47	0.25
	3	1450	1.40	0.21
	4	2200	1.37	0.34
	5	2400	1.37 🖌	0.33
			相差5%	整体相差不大 远小于y方向受力

◆随着网格数量的增加,球体y方向受力 变化不明显,考虑计算成本,后续选 取560W网格进行计算。

3 湍流模型选取

本计算流通截面变化较大,且为湍流计算,数值模拟中多采用k-ω SST模型进行计算。同时,考 虑到壁面流动较为复杂,对相同工况采用RSM (雷诺应力)模型进行对比计算。

4 管道长度影响计算

上述模型抽吸管长度约为800mm,在上述模型基础上,延长抽吸管道长度(延长700mm,总长约为 1500mm),分析管内流场及压力变化。(抽吸流量: 180m3/h)

参数截取点示意图

位置点	压力 (Pa)	速度 (m/s)	位置点	压力 (Pa)	速度 (m/s)
point1	-0.74028	5.0	point01	-745.67828	15.1
point2	0.00015	4.9	point02	-754.31328	14.8
point3	0.76488	4.8	point03	-763.84778	15.3
point4	1.60680	4.7	point04	-773.02032	15.8
point5	2.69175	4.5	point05	-781.69702	16.1
Point6	3.46433	4.3	point06	-785.73871	16.3

长管道内压力及速度

◆ 两种不同管长流场分布相似,长管道中燃料元件y方向受力为2.03N, 短管道中为2.04N;

- ◆从计算结果看,长管道外管入口通道内每100mm压力降低0.86Pa, 内管出口通道内每100mm压力降低9.00Pa;
- ◆ 管道长度对燃料元件受力结果影响不大。

5 受力特征分析

计算结果及分析

计算参数设置

进口	Velocity-inlet	
出口	Outflow	
湍流模型	k-ω SST	
压力-速度耦合算法	SIMPLEC	
压力项离散格式	Standard	
动量离散格式	二阶迎风	
湍动能离散格式	二阶迎风	
瞬态公式	二阶隐式	
时间步长	1×10 ⁶ ~5×10 ⁵	
抽吸流量	150m ³ /h, 300m ³ /h	

当y方向受力大于2N时,认为燃料球可被抽吸

♦ 150m³/h:

- ◆ 当球y坐标大于<u>-30</u>时, y方向受力大于<u>2N</u>, 燃料元件可以被吸入管道内, 在y=10附近时, 燃料元件受力有明显的下降, 随着元件的上升, 曳力会很快恢复并不断增加;
- ◆ x方向受到的力相较y方向的力较小,当燃料元件位于抽吸口时(y<20mm),元件均受到x正方向的力,在该力的作用下燃料元件会偏向抽吸口较长一侧,更有利于抽吸。
- ♦ 300m³/h:
- ◆ 燃料元件x>-25mm, y>-40mm范围内可以被抽吸管吸入;
- ◆ 在45度斜角管嘴之外,仍然存在约15mm的距离范围,可以有足够大的吸力抽吸燃料元件。

◆抽吸口的存在长短侧,元件两侧的<u>流场不对称</u>。
气体流速较高,元件尾流会出现摆动及涡流的情况,使得元件<u>y方向受力</u>会出现小幅度的下降。
◆随着元件的上升,受抽吸口形状的影响逐渐变小,尾流逐渐趋于对称,元件<u>下游低压区</u>扩大;
◆当燃料元件完全进入抽吸口时,元件下游流场较为对称,元件y方向压差较大,y方向受力增加。
由于尾流较为对称,元件在x方向受力明显变小(|Fx| < 1N),这使得球能够更加稳定地在管道内输送。

基于CFD的球形燃料元件气力抽吸行为数值研究

基于CFD的球形燃料元件气力抽吸 行为数值研究

-2025年"核理安邦"联合博士生学术论坛

汇报人:穆云梦

邮 箱: mym21@mails.tsinghua.edu.cn

单 位:清华大学核能与新能源技术研究院