

HTR-PM正常工况一回路典型 核素化学形态和化学反应研究

汇报人: 郭静霓
导师: 谢锋 副教授
2025年5月18日

目 录

反应堆厂房 环境 冷却剂少量泄漏 热管 发生器 水冷却剂 氦气冷却剂 HTR-PM 堆芯 ×××× ᠂ᢅᢩᡒ᠈ᢩ᠊ᢤ TRISO包覆颗粒 燃料元件 外热解炭层 ^ 放射性物质 放射性物质 厂房泄漏 碳化硅层 (SiC) 内热解炭层 缓冲层

氦气净化系统

1. 研究背景

920µm

\$00µm

UO₂核芯

一回路边界

化学形态的研究: ▶ 理解反应堆严重事故的进 程并控制其后果,充分掌 握放射性物质的迁移行为。 ▶ 研究其在一回路向二回路 的释放、在环境中的大气 扩散、土壤迁移、食物链 转移,进而实施有效的辐 射监测和科学的剂量评估。

流出物排放

二回路边界

高温气冷堆放射性物质产生及迁移过程

60mm

碘的摩尔分数与温度的函数, Cs:I=10, I:H₂O=2.5×10⁻⁵, P=1.2MPa, T=1000K, 直线代表安全分析的参考条件(0.1%)

计算了CANDU中在LOCA事故后释放出的碘 化合物种类和数量,测试了多种因素如碘浓度、 氧分压和其他元素对碘化合物的影响。

Nucl Technol, 2002, 138(2): 162-178.

将2.2×10¹⁵atom·cm⁻³的I释放到含有2.0×10¹⁶molecules·cm⁻³的CsOH蒸汽中发生的化学变化

	CANDU堆计算结果表明,CsI和CsOH(<10秒)	1
	是系统中最重要的物质,只有在Cs:I比值小于	
	1的情况下, <mark>原子I</mark> 才占据重要地位。	1
١.		

1. 研究背景与现状分析

Element	Relative mass (kg)	Possible chemical form
Xe	37.0	Xe
Kr	1.9	Kr
Cs	18.7	Cs(g)
		CsI
		Cs ₂ Te
		Cs_2ZrO_3
		$Cs_2UO_4/Cs_2UO_{3.5}$
		Cs ₂ MoO ₄
I	1.8	CsI
		I
		I ₂
Te	3.6	Te ₂ (g)
		Cs ₂ Te
		Te
		Cs ₂ TeO ₃
Мо	22.1	[Mo] _{ss}
		Cs ₂ MoO ₄
		MoO ₂
Ru	14.8	[Ru] _{ss}
		RuO ₃ (g)
Zr	25.5	ZrO ₂
		Cs_2ZrO_3
_		BaZrO ₃
Ва	8.7	BaO
		BaUO ₃
	~ ~ ~	BaZrO ₃
Rare earths	64.0	Oxides

计算了水冷堆中包括I, Cs, Te, Ba, Sr, Mo, Ru, Zr及稀有金属的化学形态,基于氧势与温度的关系分析了核素体系的热力学性质。

J. Nucl. Mater. 1988, 152(2-3): 301-309.

Chemical Forms in the Cs-Sr-Ag-I-O Five-Component System in the Condition of 750°C

Phase		Products	
Gaseous	$\begin{array}{c} \text{AgO, Cs, CsI, Cs}_2\text{I}_2, \text{CsO,} \\ \text{Cs}_2\text{O, Cs}_2\text{O}_2, \text{I, O}_2 \\ \text{CsO}_2, \text{Cs}_2\text{O}, \text{Cs}_2\text{O}_2, \text{Cs}_2\text{O}_3, \\ \text{SrO, SrO}_2 \end{array}$		$_2$, CsO, D_2
Nongaseous			, Cs ₂ O ₃ ,

Products	Amount (mol)
$\begin{array}{c} Cs_2O_2\\ Cs_2O\\ CsO\\ CsO_2\\ CsO_2\\ Cs_2O_3\\ Cs_2O_2\\ Cs_2O\\ CsI\\ Cs\end{array}$	$\begin{array}{c} 6.7 \times 10^{-9} \\ 7.0 \times 10^{-10} \\ 2.0 \times 10^{-10} \\ 2.1 \times 10^{-5} \\ 3.5 \times 10^{-6} \\ 9.0 \times 10^{-8} \\ 6.5 \times 10^{-9} \\ 8.7 \times 10^{-9} \\ 3.7 \times 10^{-11} \end{array}$

计算了HTR-PM中包括Cs-Sr-Ag-I-O五组分体 系的热力学平衡结果,后续进行了进水和超压 事故情形下体系化学形态的变化分析。

HTR-PM一回路氦气中元素含量

一回路中变量的参考工况和变化范围

IN

元素	含量 (mol)	元素	含量(mol)	变量	参考工况	变化范围
Kr	6.18E-08	Fe	3.88E-13	T (°C)	250 or 750	200-1000
Xe	3.82E-07	Cr	3.73E-15	P (MPa)	5	2-8
Ι	2.58E-10	Mn	1.81E-15	n(C) (mol)	3.92	0-30.75
Sr	6.40E-13	Ni	3.33E-13	 n(H) (mol)	4.99	0-60
Cs	5.96E-10	Rb	7.93E-12	n(O) (mol)	6.11	0-34.5
Ag	6.73E-12	С	9.09E-05	n(N) (mol)	0.2	0-3
Со	1.75E-11	Н	7.89E-05			_

次要元素计算结果和实验结果的比较

FactSage理论计算杂质相对含量和实验结果的对比

(括号中为实验测量结果)

HTR-PM一回路中C, H, O, N元素的主要化学形态随温度的变化

▶温度对核素化学形态的影响最大,而压 力和 N 含量的影响可以忽略不计。 ▶相关性分析表明,不同的 C 含量主要影 响 Cs、Co、Fe、Cr、Ni 和 Rb 的化学 形态; →H 含量主要影响 I、Mn 和 Cr 的化学形 态; ≻O 含量主要影响 Cs、Sr、Co、Fe、Cr 和 Rb 的化学形态。

11

4. 讨论-4.1 T-C含量的影响

Cs元素化学形态随温度和C含量变化情况

	相组成变化区域	变化过程
C含量增多	$\textcircled{1}\rightarrow \textcircled{2}\rightarrow \textcircled{3}$	$CsOH(g) \rightarrow Cs(g) + CsOH(g) \rightarrow Cs(g)$
	$\textcircled{1}\rightarrow \textcircled{4}\rightarrow \textcircled{5}\rightarrow \textcircled{6}$	$CsOH(g) \rightarrow CsOH(g) + CsI(g) \rightarrow Cs(g) + CsOH(g) + CsI(g) \rightarrow Cs(g) + CsI(g)$
	$7 \rightarrow 1 \rightarrow 4$	$CsOH(g)+CsNO_3(g) \rightarrow CsOH(g)+CsI(g)+CsNO_3(g) \rightarrow CsOH(g)+CsI(g)$
温度升高	$\begin{array}{c} 0 < C < 3 \text{mol} \\ \textcircled{8} \rightarrow \textcircled{7} \rightarrow \textcircled{1} \end{array}$	$CsNO_3(g) \rightarrow CsOH(g)+CsNO_3(g) \rightarrow CsOH(g)$
	$3 < C < 6 \text{mol}$ $\textcircled{0} \rightarrow \textcircled{9} \rightarrow \textcircled{4} \rightarrow \textcircled{5} \rightarrow \textcircled{2}$	$\frac{Cs_2CO_3(s)+CsI(g) \rightarrow Cs_2CO_3(s)+CsOH(g)+CsI(g) \rightarrow CsOH(g)+CsI(g)}{\rightarrow Cs(g)+CsOH(g)+CsI(g) \rightarrow Cs(g)+CsOH(g)}$
	$6 < C < 30.75 \text{mol}$ $\textcircled{0} \rightarrow \textcircled{9} \rightarrow \textcircled{4} \rightarrow \textcircled{5} \rightarrow \textcircled{6} \rightarrow \textcircled{3}$	$Cs_{2}CO_{3}(s)+CsI(g) \rightarrow Cs_{2}CO_{3}(s)+CsOH(g)+CsI(g) \rightarrow CsOH(g)+CsI(g)$ $\rightarrow Cs(g)+CsOH(g)+CsI(g) \rightarrow Cs(g)+CsI(g) \rightarrow Cs(g)$

Cs元素的T-H变化图

Cr元素的T-H变化图

➤T-C的相分界线受参考条件下的O含量(6.11mol)制约。
 ➤T-O的相分界线由参考条件下能与O形成化合物的C(3.92mol)和H(4.99mol)元素含量决定。
 > 微量元素的化学形态受到次要元素化学形态的影响。

Rb元素的C-O变化图(250°C)

Rb元素的C-O变化图(750°C)

Cs, Sr, Rb, Ag, I的主要化学形态及化学反应(红色代表在选定参考条件下发生的化学反应)

Cr, Mn, Fe, Co, Ni的主要化学形态及化学反应(红色代表在选定参考条件下发生的化学反应) ¹⁸

- Kr、Xe 和 N 在所有条件下都以 Kr(g)、Xe(g) 和 N₂(g)的形式存在,而 Cs、Sr 和 Rb 除氢氧化物外形成 Cs(Sr)_xCO₃和 Cs(Rb)NO₃。Cr 和 Mn 主要以 Cr(Mn)_xO_y、Cr(Mn)(OH)_y 和 Cr(Mn)_xO_ySr_z 的形式存在,而 Fe、Co 和 Ni 主要形成氧化物和 氢氧化物。
- Ag和I主要分别以单质和碘化物的形式存在。Cs、Rb和Ag都可以形成碘化物, 与碘化合的能力为CsI > RbI > AgI。
- 基于相关性分析,还系统讨论了温度、压力和杂质含量的影响。温度是最大的影响因素,而压力和 N 含量对化学状态的影响可以忽略不计。
- C 和 O 含量对典型核素的影响表现出镜像对称关系,其中相分界线的位置受体 系中杂质元素形成的稳定化合物的数量和化学形态的影响。

谢谢大家!